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Abstract: This contribution investigates the extension of the microplane formulation to the description of trans-

versely isotropic materials such as shale rock, foams, unidirectional composites, and ceramics. Two possible

approaches are considered: 1) the spectral decomposition of the stiffness tensor to define the microplane constitu-

tive laws in terms of energetically orthogonal eigenstrains and eigenstresses; and 2) the definition of orientation-

dependent microplane elastic moduli. It is shown that the first approach provides a rigorous way to tackle

anisotropy within the microplane framework whereas the second approach represents an approximation which,

however, makes the formulation of nonlinear constitutive equations much simpler. The efficacy of the second

approach in modeling the macroscopic elastic behavior is compared to the thermodynamic restrictions of the

anisotropic parameters showing that a significant range of elastic properties can be modeled with excellent accu-

racy. Further, it is shown that it provides a very good approximation of the microplane stresses provided by the

first approach, with the advantage of a simpler formulation.

It is concluded that the spectral stiffness decomposition represents the best approach in such cases as for mod-

eling unidirectional composites, in which accurately capturing the elastic behavior is important. The introduction

of orientation-dependent microplane elastic moduli provides a simpler framework for the modeling of transversely

isotropic materials with remarked inelastic behavior, as in the case, for example, of shale rock.
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1 Introduction

Quasi-brittle materials are defined as those materials that exhibit no or negligible plastic strain prior

to failure [1]. The formation and growth of fracture process zone are considered to be responsible for

both the softening behavior observed in the post-peak stress-strain curve and the development of plastic

irreversible strains [2]. The presence of anisotropy in quasi-brittle materials is very common. For example,

the response of rigid foams is usually anisotropic. During the foaming process viscous forces cause the cells

to be elongated in the rise direction, and the material response will be therefore stiffer in this direction

[3]. A special case of anisotropy is transverse isotropy, which contains a plane of isotropy, implying that

the material can be rotated with respect to the loading direction about one axis without measurable effect

on the material’s response. Due to its high symmetry and relative simplicity in mathematical formulae,

transversely isotropic medium has become one of the most studied anisotropic media in the literature.

Fiber-reinforced composites with all fibers being in parallel can be regarded as transversely isotropic, and

many sedimentary rocks, such as shales, slates, siltstones, claystones, and mudstones, are best described

as transversely isotropic media with the symmetric axes perpendicular to bedding. Such bedding planes

affect the strength and deformational behaviors of the rock with orientation to the applied stresses.

Elastic transverse isotropy is the subject of the present contribution which investigates the extension

of the microplane formulation to this type of anisotropy. Two possible approaches are compared: 1)

the spectral decomposition of the stiffness tensor to define the microplane constitutive laws in terms

of energetically orthogonal eigenstrains and eigenstresses; and 2) the definition of orientation-dependent

microplane elastic moduli.

2 Background of Microplane Model

The microplane model describes the material behavior at the mesoscopic scale by formulating the constitu-

tive laws in terms of stress and strain vectors acting on individual microplanes of all possible orientations

at a given material point [4, 5, 7, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 3, 17, 19, 20, 21, 18, 22], instead of using

a traditional tensorial constitutive model. These microplanes may be imagined to represent damage planes

or weak planes in the mesoscale structures, such as contact layers between aggregate pieces in concrete or

defects in composite laminates.
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The microplane concept has known a long history. The characterization of the material behavior on

different material planes was first suggested by Mohr [23] in 1900. This idea was then advanced by Taylor

[24], and applied to develop the slip theory of plasticity by Batdorf and Budiansky [25]. Later, it was

extended by Bažant and his co-workers to model quasi-brittle materials exhibiting softening damage [4, 5].

Since then the microplane model for concrete has been studied extensively, and evolved through several

progressively improved versions [4, 5, 8, 9, 6, 11, 10, 12, 13, 18, 19, 20, 21]. Numerous advantages of

microplane models were reviewed in Brocca and Bažant [26] and Cusatis et al. [27]. The main appealing

aspect of this approach is its conceptual simplicity, i.e., once the general algorithm for the relationship

between microplane quantities and macroscopic tensors has been established, formulating a constitutive

law is intuitive, since all the quantities involved always have an immediate physical meaning. Oriented

phenomena, such as friction and cracking, can be realistically simulated. Besides, the microplane model

automatically exhibits the vertex effect, which has not been captured by any usable tensorial models,

and the interaction of microplanes accurately captures all the cross effects, such as shear dilatancy and

pressure sensitivity. This also allows simulating damage-induced anisotropy quite simply. Despite the fact

that the adoption of the microplane modeling approach is usually computationally expensive compared

to the classical tensorial models, systems of millions of finite elements have been successfully solved using

microplane model for concrete [7]. Microplane models have also been developed for other complex materials

such as rock [14], cemented soils [28], clay [15], rigid foam [3], fiber reinforced concrete [17], shape memory

alloy [29], and fiber composites (prepreg laminates [27, 30] and braided composites [31]). Finally, it is

worth noting that the constitutive relations prescribed on the microplanes, which are lumped into a single

material point in the microplane models, can also be used in an explicitly mesoscale model on planes of

various orientations separating the neighboring aggregates embedded in a cement mortar matrix, as it has

been done in the recently developed Lattice Discrete Particle Model (LDPM) [32, 33]. Inevitably, there

are similarities between the constitutive relations of microplane models and those of LDPM.

However, most of the microplane and LDPM simulations have been focusing on the mechanical behav-

ior of isotropic quasi-brittle materials, and there are only a few studies on the formulation for anisotropic

quasi-brittle materials [15, 3, 27, 34]. Brocca et al. proposed a microplane formulation for stiff foam

based on the assumption that the elastic moduli on the microplanes vary ellipsoidally as function of the
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microplane orientation [3]. This approach cannot be used to correctly represent the mechanical proper-

ties of strongly anisotropic materials due to the fact that an exact correspondence in elasticity between

tensorial macro-stiffness and vectorial micro-stiffness cannot be obtained. A similar limitation exists in

the microplane models developed for anisotropic clay [34, 15]. As shown by Cusatis et al. [27], only the

microplane formulation based on spectral decomposition of the stiffness tensor guarantees that an exact

correspondence in elasticity between the microplane formulation and the tensorial formulation can be es-

tablished. Although the spectral stiffness microplane model is the only known exact and rigorous approach

for the anisotropic generalization of the microplane model, such a method becomes less appropriate for

the simulation of the nonlinear and softening behaviors of quasi-brittle materials. Cusatis et al. managed

to simulate the strain-softening damage and fracture mechanics aspects by using strain-dependent limits

to provide bounds for the microplane stresses in each spectral mode [27], but it is not as convenient as

directly using microplane normal stress and strain components. This, along with the fact that too many

parameters need to be identified in the calibration procedure, renders the method unwieldy in practice, and

therefore there remains a scientific challenge to relate the macroscopic response of anisotropic quasi-brittle

materials to the elastic properties of its underlying microstructure.

Even for the simulation of the elasticity of isotropic quasi-brittle materials, as it was pointed out by

Bažant et al. [9] and Cusatis et al. [32], the microplane formulation without volumetric-deviatoric split of

the strain cannot cover the entire range of thermodynamically acceptable Poisson’s ratios (−1 ≤ ν ≤ 0.5):

the Poisson’s ratio is restricted to the range from −1 to 0.25. Although the full Poisson’s ratio range

can be obtained by introducing the volumetric-deviatoric decomposition of the normal strain [35], this

complicates severely the damage formulation. The same issue exists for the simulation of anisotropic

quasi-brittle materials, and there still exists no microplane model without spectral decomposition that

is capable of giving any thermodynamically admissible Poisson’s ratio. In this study, the possibility of

formulating a microplane model for transversely isotropic quasi-brittle materials based on the assumption

that the elastic moduli on the microplanes vary with the microplane orientation is investigated in details,

and the ranges of the Poisson’s ratios produced by the model are compared with the full Poisson’s ratio

range obtained from the thermodynamic restrictions.
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3 Thermodynamic Restrictions on Elastic Constants of Transversely Isotropic Materials

The elastic stress-strain relation of an anisotropic material can be written in tensorial notation as σij =

Eijklεkl, where the indices refer to Cartesian coordinates xi (i = 1, 2, 3); σij and εij are the second-order

stress and strain tensors, respectively. They are symmetric and their symmetry enables their contraction

into six-dimensional vectors σσσ and εεε. Similarly, the internal and external symmetries of the fourth-order

stiffness tensor Eijkl allow its contraction into a 6 × 6 matrix E. The following rules contract a pair of

indices into a single index: 11 → 1, 22 → 2, 33 → 3, (23, 32) → 4, (13, 31) → 5, and (12, 21) → 6.

Therefore, in matrix notation one can write σσσ = Eεεε where σσσ = [σ11, σ22, σ33,
√

2σ23,
√

2σ13,
√

2σ12]T ,

εεε = [ε11, ε22, ε33,
√

2ε23,
√

2ε13,
√

2ε12]T , and the matrix E is defined accordingly. The foregoing definitions

of six-dimensional vectors are known as the Kelvin notation [36]. The factor
√

2 assures that both the

stiffness tensor and its column matrix have the same norm, given by the sum of the squares of their

elements.

As an anisotropic medium of the highest symmetry, i.e., hexagonal symmetry, transversely isotropic

medium possesses a rotational symmetry axis and the least number of independent elastic constants (five

in total). For the case of transverse isotropy with isotropy in the 1-2 plane, as shown in Fig. 1(a), the

elastic compliance matrix, C = E−1, is given by:

C =



1/E −ν/E −ν ′/E ′ 0 0 0

−ν/E 1/E −ν ′/E ′ 0 0 0

−ν ′/E ′ −ν ′/E ′ 1/E ′ 0 0 0

0 0 0 1/(2G) 0 0

0 0 0 0 1/(2G) 0

0 0 0 0 0 (1 + ν)/E


(1)

where E ′, E are Young’s moduli in the longitudinal and transverse directions, respectively, G is out-of-plane

shear modulus, ν ′, ν are Poisson ratios in the longitudinal and transverse directions, respectively.

It is well known that a necessary and sufficient condition for the work done on an elastic material to

be strictly positive is that the matrix C be symmetric and positive definite [37]. If the work done on a

material is not positive, then useful work could be extracted from the material. This would be a violation
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of established thermodynamic principles. A necessary and sufficient condition for a symmetric matrix

to be positive definite is that all determinants formed from it be positive. In the case of a transversely

isotropic material, applying the conditions of positive definiteness to the compliance matrix C, one can

show that the following inequalities must be satisfied by the elastic constants:

−1 < ν < 1 (2)

−
√
E ′/E < ν ′ <

√
E ′/E (3)

ν < 1− 2(ν ′)2(E/E ′) (4)

By making use of these equations, one can find the lower and upper bounds of ν ′ for every possible value

of ν with different values of E/E ′, as plotted in Fig. 2.

4 Microplane Model Formulation with Different Types of Constraints

At the microstructural level, nonlinear and inelastic phenomena often occur on planes of a certain specific

orientation, and thus the constitutive law characterizing the mechanical behavior is best described by a

relationship between stress and strain vectors acting on a generic plane of arbitrary spatial orientation.

These microplanes can be imagined as the tangent planes of a unit sphere surrounding every point in the

three-dimensional space [27].

There are two different classes of microplane models: the kinematically constrained and the statically

constrained [3]. In the kinematically constrained microplane model, the strain vector on each microplane

is the projection of the macroscopic strain tensor. Using Kelvin notation, one can write εεεP = Pεεε where

εεεP = [εN , εM , εL]T is the microplane strain vector, with εN being the normal strain component, and εM

and εL being the shear strain components, respectively. The matrix P can be written as:

P =


N11 N22 N33

√
2N23

√
2N13

√
2N12

M11 M22 M33

√
2M23

√
2M13

√
2M12

L11 L22 L33

√
2L23

√
2L13

√
2L12

 (5)

which collects the components of the tensors Nij = ninj, Mij = (minj +mjni)/2 and Lij = (linj + ljni)/2,
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where ni, mi, and li are local Cartesian coordinate vectors on the generic microplane, with ni being

normal. If the microplane orientation is defined by spherical angles θ and φ, as shown in Fig. 1(b), then

n1 = sin θ cosφ, n2 = sin θ sinφ, and n3 = cos θ, and one can choose m1 = cos θ cosφ, m2 = cos θ sinφ,

and m3 = − sin θ, which gives l1 = − sinφ, l2 = cosφ, and l3 = 0. Once the strain components on

each microplane are obtained, the stress components are updated through microplane constitutive laws,

which can be expressed in an algebraic or differential form. If the kinematic constraint is imposed, in

general, the microplane stress components do not coincide with the projections of the macroscopic stress

tensor, i.e., σσσP 6= Pσσσ. Thus static equivalence or equilibrium between the microplane stress components

and macroscopic stress tensor must be enforced by other means. This is accomplished by applying the

principle of virtual work, which leads to:

σσσ =
3

2π

∫
Ω

PTσσσPdΩ (6)

where Ω is the surface of a unit hemisphere.

It is possible to formulate the microplane model such that a kinematic constraint for the strains

coexists with a static constraint for the stresses. When this happens, the model is said to have a double

constraint. As proved by Cusatis et al. [27], such a double constraint exists in the elastic regime if and

only if microplane elasticity is formulated through the spectral decomposition of the stiffness or compliance

matrices.

5 Spectral Stiffness Microplane Model

By using the spectral decomposition theorem [27, 50, 52, 51], the stiffness matrix E can be decomposed

as E =
∑
I

λIEI where λI are the eigenvalues of E, and EI define a set of matrices constructed from

the eigenvectors of E as EI =
∑
n

φφφInφφφ
T
In where φφφIn is the normalized eigenvector associated with the

eigenvalue λI of multiplicity n so that φφφTInEφφφIn = λI. The following conditions hold for the matrix E:∑
I

EI = 1, EIEI = EI , and EIEJ = 0 (I 6= J). EI decomposes the stress and strain vectors into

energetically orthogonal modes, which are called eigenstresses and eigenstrains, as εεεI = EIεεε and σσσI = EIσσσ,

respectively, where σσσ =
∑
I

σσσI , εεε =
∑
I

εεεI , and σσσI = λIεIεIεI . In a similar manner, one can also decompose

the stress and strain vectors into microplane eigenstresses and microplane eigenstrains as εεεPI = PIεεε and
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σσσPI = PIσσσ, respectively, where PI = PEI [27]. Finally, in the elastic regime, the microplane eigenstresses

are proportional to the microplane eigenstrains through the associated eigenvalue, that is, σσσPI = λIεεεPI .

For the case of transverse isotropy, the eigenvalues of the compliance matrix C, which are the re-

ciprocal of the eigenvalues λI of the stiffness matrix E, can be expressed as [51, 27]: λ−1
1 =

1 + ν

E
,

λ−1
2 =

1− ν
2E

+
1

2E ′
−
[(1− ν

2E
− 1

2E ′

)2

+
2ν ′2

E ′2

]1/2

, λ−1
3 =

1− ν
2E

+
1

2E ′
+
[(1− ν

2E
− 1

2E ′

)2

+
2ν ′2

E ′2

]1/2

,

and λ−1
4 =

1

2G
, and the corresponding EI can be expressed as:

E1 =



1/2 −1/2 0 0 0 0

−1/2 1/2 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(7)

E2 =



c2/2 c2/2 cs/
√

2 0 0 0

c2/2 c2/2 cs/
√

2 0 0 0

cs/
√

2 cs/
√

2 s2 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(8)

E3 =



s2/2 s2/2 −cs/
√

2 0 0 0

s2/2 s2/2 −cs/
√

2 0 0 0

−cs/
√

2 −cs/
√

2 c2 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(9)
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E4 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0


(10)

where c = cosω, s = sinω, and tan 2ω = [−2
√

2ν ′/E ′]/[(1− ν)/E − 1/E ′].

As a generalization of the volumetric-deviatoric decomposition, the spectral stiffness microplane model

is the only exact and rigorous approach for the anisotropic generalization of the microplane model, but it

becomes unwieldy for the simulation of the nonlinear and softening behaviors of quasi-brittle materials.

This is because various nonliear and softening laws must be formulated for the different spectral modes and

for their interaction. Furthermore, the use in the nonlinear regime of the spectral deformation modes that

are derived from the elastic stiffness matrix can be questioned from a theoretical point of view. In many

cases, it is easier to formulate nonlinear constitutive equations, especially for fracture and damage, with

reference to the total microplane stresses and strains. To directly use normal stress and strain components,

a microplane formulation based on the assumption that the elastic moduli on the microplanes vary with

the microplane orientation is more convenient. This type of elastic formulation is discussed in the next

section.

6 Microplane Model with Orientation Dependent Moduli

To capture the macroscopic response of anisotropic materials, Brocca et al. [3] proposed a microplane

formulation based on the assumption that the elastic moduli on the microplanes vary as functions of the

microplane orientation, that is, Ei = Ei(φ, θ), where subscript i = N,M,L labels the components of the

microplane strain and stress vectors. Furthermore, for transversely isotropi materials, one can assume that

the moduli are functions of θ only. By integrating the microplane elastic energy over the unit hemisphere,

one can obtain:

1

2
σσσTE∗σσσ = W =

3

2π

∫
Ω

1

2
σσσTPEPσσσPdΩ =

1

2
σσσT
[ 3

2π

∫
Ω

PTEPPdΩ
]
σσσ ⇒ E∗ =

3

2π

∫
Ω

PTEPPdΩ (11)
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where Ep = diag(Ei).

The objective of thie study is to investigate the form of the function of Ei(θ) which gives the maximum

range of Poisson’s ratios The following four cases are studied. The first is Case A, characterized by a linear

variation with θ:

EN = (a1 − a2)
2

π
θ + a2; EM = (a3 − a4)

2

π
θ + a4; EL = (a3 − a4)

2

π
θ + a4 (12)

The second case, Case B, makes use of trigonometric functions:

EN = a1 sin2 θ + a2 cos2 θ; EM = a3 sin2 θ + a4 cos2 θ; EL = a3 sin2 θ + a4 cos2 θ (13)

The third case, Case C, uses the inverse of the functions in Case B:

EN = (a1 sin2 θ + a2 cos2 θ)−1; EM = (a3 sin2 θ + a4 cos2 θ)−1; EL = (a3 sin2 θ + a4 cos2 θ)−1 (14)

where ai (i = 1, 2, 3, 4) are positive unknown parameters. In both Case A and Case B, EN |θ=0 = a2,

EN |θ=π/2 = a1, EL|θ=0 = EM |θ=0 = a4, and EL|θ=π/2 = EM |θ=π/2 = a3. In Case C, instead, one has

EN |θ=0 = 1/a2, EN |θ=π/2 = 1/a1, EL|θ=0 = EM |θ=0 = 1/a4, and EL|θ=π/2 = EM |θ=π/2 = 1/a3. In all the

cases, the condition ai > 0 (i = 1, 2, 3, 4) ensures that Ei > 0 (i = N,M,L).

Finally, the fourth case, Case D, assumes independent modulus values at each microplane orientation.

For the most commonly adopted quadrature formula with 37 microplanes [53, 54], this approach involves

the values of EN and EM at eight different θ: θ1 = 0, θ2 = 0.1π, θ3 = 0.157π, θ4 = 0.25π, θ5 = 0.304π,

θ6 = 0.391π, θ7 = 0.4π, and θ8 = 0.5π. Hence, in this case, Young’s moduli, E and E ′, and Poisson’s

ratios, ν and ν ′, for the transversely isotropic material depend on 16 parameters: EM(θ1), EM(θ2), EM(θ3),

EM(θ4), EM(θ5), EM(θ6), EM(θ7), EM(θ8), EN(θ1), EN(θ2), EN(θ3), EN(θ4), EN(θ5), EN(θ6), EN(θ7), and

EN(θ8).

Now let us examine the range of the Poisson’s ratios that the proposed microplane formulation can

generate in each case. Substituting Ei(θ) as indicated in Eqns. (12)–(14) into Eqn. (11), one can obtain
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the following results:

E∗ =



E11 E12 E13 0 0 0

E12 E11 E13 0 0 0

E13 E13 E33 0 0 0

0 0 0 E44 0 0

0 0 0 0 E44 0

0 0 0 0 0 E66


(15)

where for Case A, one can obtain the following:

E11 = [447a1 + 3(−149 + 60π)a2 + 253a3 + (120π − 253)a4]/(300π) (16)

E12 = [149a1 + (−149 + 60π)a2 − 149a3 + (149− 60π)a4]/(300π) (17)

E13 = [26a1 + (−26 + 15π)a2 − 26a3 + (26− 15π)a4]/(75π) (18)

E33 = [48a1 + (−48 + 45π)a2 + 52a3 + (−52 + 30π)a4]/(75π) (19)

For Case B, one has the following results:

E11 = (18a1 + 3a2 + 10a3 + 4a4)/35 (20)

E12 = (6a1 + a2 − 6a3 − a4)/35 (21)

E13 = (4a1 + 3a2 − 4a3 − 3a4)/35 (22)

E33 = (6a1 + 15a2 + 8a3 + 6a4)/35 (23)
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For Case C, one has the following results:

E11 =
3

8

[
2a3 + a4

(a4 − a3)2
− (4a3 − a4)a4a

−1/2
3 arctan[(a4 − a3)1/2a

−1/2
3 ]

(a4 − a3)5/2
(24)

+
2a1 − 5a2

(a2 − a1)2
+

3a2
2a
−1/2
1 arctan[(a2 − a1)1/2a

−1/2
1 ]

(a2 − a1)5/2

]

E12 =
3

8

[
5a4 − 2a3

3(a4 − a3)2
− a4

2a
−1/2
3 arctan[(a4 − a3)1/2a

−1/2
3 ]

(a4 − a3)5/2
(25)

+
2a1 − 5a2

3(a2 − a1)2
+
a2

2a
−1/2
1 arctan[(a2 − a1)1/2a

−1/2
1 ]

(a2 − a1)5/2

]

E13 =
1

2

[
− 2a4 + a3

(a4 − a3)2
+

3a4a
1/2
3 arctan[(a4 − a3)1/2a

−1/2
3 ]

(a4 − a3)5/2
(26)

+
2a2 + a1

(a2 − a1)2
− 3a2a

1/2
1 arctan[(a2 − a1)1/2a

−1/2
1 ]

(a2 − a1)5/2

]

E33 =
2a4 + a3

(a4 − a3)2
− 3a4a

1/2
3 arctan[(a4 − a3)1/2a

−1/2
3 ]

(a4 − a3)5/2
(27)

+
a2 − 4a1

(a2 − a1)2
+

3a
3/2
1 arctan[(a2 − a1)1/2a

−1/2
1 ]

(a2 − a1)5/2

Note that Eqns. (24)-(27) are valid only when a2 > a1 and a4 > a3. When a2 < a1, arctan[(a2 −

a1)1/2a
−1/2
1 ](a2−a1)−5/2 needs to be replaced by arctanh[(a1 − a2)1/2a

−1/2
1 ](a1 − a2)−5/2; and similarly, when

a4 < a3, arctan[(a4 − a3)1/2a
−1/2
3 ](a4 − a3)−5/2 needs to be replaced by {arctanh[(a3 − a4)1/2a

−1/2
3 ](a3 −

a4)−5/2 in Eqns. (24)-(27).

Young’s moduli and Poisson’s ratios for transversely isotropic materials can be written as:

E = (E2
11E33 + 2E2

13E12 − 2E11E
2
13 − E33E

2
12)/(E11E33 − E2

13) (28)

E ′ = (E2
11E33 + 2E2

13E12 − 2E11E
2
13 − E33E

2
12)/(E2

11 − E2
12) (29)

ν = (E12E33 − E2
13)/(E11E33 − E2

13) (30)

ν ′ = E13/(E11 + E12) (31)

Defining the following dimensionless variables: t = E ′/E, A = E33/E11, B = E13/E11, and C = E12/E11,
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and one has:

t = E ′/E = (A−B2)/(1− C2) (32)

ν = (CA−B2)/(A−B2) (33)

ν ′ = B/(1 + C) (34)

Furthermore, by setting α = a2/a1, β = a3/a1, and γ = a4/a1, one can plot the values of t(α, β, γ),

ν(α, β, γ), and ν ′(α, β, γ) for any α > 0, β > 0, and γ > 0. Calculated from 108 randomly generated

positive real numbers used as α, β, or γ, the results for each case are shown in Fig. 3 with different values

of t indicated by different colors. (The figures appear in color in the electronic version of this article.) It

can be seen that the ranges of ν, ν ′, and t generated by Case B are only slightly larger than those obtained

from Case A, but significantly smaller than those obtained from Case C and Case D.

To further confirm that Case C is the best scenario, one can obtain the contour plot of t for each case.

Substituting Eqns. (32) and (34) into Eqn. (33), the function of ν = ν(ν ′, t, C) can be obtained as follows:

ν = C − ν ′2(1 + C)/t (35)

To obtain the upper and lower bounds of ν for every possible value of ν ′ with different values of t, one

needs to maximize and minimize v(α, β, γ), for any α > 0, β > 0, and γ > 0, subject to the constraints

that ν ′(α, β, γ) = ν ′0 and t(α, β, γ) = t0. The results for each case are shown in Fig. 2 with different values

of t indicated by different colors, and they are compared with the thermodynamic restrictions on elastic

constants of transversely isotropic materials obtained from Eqns. (2)-(4). Since Fig. 2 confirms that Case

C and Case D generate the largest ranges of ν, ν ′, and t, they will be adopted for the numerical modeling

of transversely isotropic elasticity of quasi-brittle materials in this study. Two examples are given as shown

below.

6.1 Elastic Microplane Model Formulation for Shale

Adequate knowledge and prediction of mechanical properties of shale are pivotal to the success in many

fields of petroleum engineering, ranging from seismic exploration, to well drilling and production, and to the
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design of hydraulic fractures. Shale is best described as transversely isotropic quasi-brittle material with

the symmetric axes being perpendicular to bedding. In laboratory measurements of shale, high magnitude

of anisotropy was reported for both static [38] and dynamic [39] conditions, which cannot be neglected in

shale modeling. Neglecting shale anisotropy may lead to incorrect estimates of rock and fluid properties,

fracture aperture, fracture containment, and stress or stress changes resulting from production. To our

knowledge, a microplane model to completely characterize the transversely isotropic elastic behavior of

shale has not yet been developed.

Due to the presence of bedding-parallel weakness planes, shales are in general stiffer along the bedding

planes than perpendicular to bedding, i.e, E ′/E < 1. Fig. 4 plots the ranges of ν and ν ′ obtained from

microplane model based on Case C for seven different values of E ′/E when 0 < E ′/E ≤ 1. The ranges of

ν and ν ′ for various types of shale provided by existing literature [40, 41, 42, 43, 44, 45] are also plotted

on Fig. 4. It can be seen that the ranges of ν and ν ′ for most types of shale fall within the microplane

simulation region. The ranges of ν and ν ′ based on Case D are also plotted in Fig. 4 for comparison.

Again, it shows that the possible range of Poisson’s ratios obtained from Case D are much larger than

those obtained from Case C.

One can take Boryeong shale as an example, which has been extensively investigated in the literature.

The experimental data on the five elastic constants of Boryeong shale are provided by Cho et. al. [42],

as shown in Table 1. Based on the experimental data, one has E = 37.3 GPa, E ′ = 18.4 GPa, ν = 0.15,

ν ′ = 0.16, and G = 12.0 GPa, and the elastic stiffness matrix, E, reads:

E =



41.2104 8.7756 7.9978 0 0 0

8.7756 41.2104 7.9978 0 0 0

7.9978 7.9978 20.9593 0 0 0

0 0 0 24.0000 0 0

0 0 0 0 24.0000 0

0 0 0 0 0 32.4348


GPa (36)

By adopting the formulation provided by Case C, and determining the unknown parameters ai (i =

1, 2, 3, 4) by minimizing the Frobenius norm
√∑

i,j

|E∗ij − Eij|2, where E∗ is defined in Eqn. (11), one obtains
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a1 = 0.0132 GPa−1, a2 = 0.0408 GPa−1, a3 = 0.0289 GPa−1, and a4 = 0.6227 GPa−1, which gives the

following results:

E∗ =



41.4836 8.8028 7.5865 0 0 0

8.8028 41.4836 7.5865 0 0 0

7.5865 7.5865 20.9401 0 0 0

0 0 0 24.1149 0 0

0 0 0 0 24.1149 0

0 0 0 0 0 32.0101


GPa (37)

It can be seen that a good match between E∗ and E has been obtained. Based on Eqn. (14), one can plot

the curves for the values and the ratios of Ei (i = N,M,L) as a function of θ, as shown in Fig. 5. Fig. 7

shows the variation of apparent Young’s modulus with anisotropy angle in comparison with experimental

data provided by Cho et al. [42].

Alternatively, Case D can also be applied. The unknown parameters EM(θ1), EM(θ2), EM(θ3), EM(θ4),

EM(θ5), EM(θ6), EM(θ7), EM(θ8), EN(θ1), EN(θ2), EN(θ3), EN(θ4), EN(θ5), EN(θ6), EN(θ7), and EN(θ8)

can be determined by minimizing the Frobenius norm
√∑

i,j

|E∗ij − Eij|2. One obtains the following results:

E∗ =



41.2104 8.7756 7.9978 0 0 0

8.7756 41.2104 7.9978 0 0 0

7.9978 7.9978 20.9593 0 0 0

0 0 0 24.0000 0 0

0 0 0 0 24.0000 0

0 0 0 0 0 32.4348


GPa (38)

In this case, an exact match is obtained. The results for the values and the ratios of Ei (i = N,M,L) as

a function of θ are shown in Fig. 5.
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6.2 Elastic Microplane Model Formulation for Rigid Polymeric Foams

Foamed plastics, such as polyurethane, polyvinyl chloride (PVC), polystyrene, polypropylene, epoxy,

phenol-formaldehyde, cellulose acetate, and silicone, are widely used as core materials for sandwich struc-

tures in automotive and aerospace industries due to their light weight and high specific stiffness. They are

good heat insulators by virtue of the low conductivity of the gas contained in the cells; they have a higher

ratio of flexural modulus to density than before foaming; and they achieve a greater load-bearing capacity

per unit weight, as well as greater energy storage and energy dissipation capacities [3, 46, 47].

However, most of the polymeric foams usually show an anisotropic behavior, which complicates the

numerical modeling of such materials. For simplicity, the elastic response of polymeric foams is usually

regarded as transversely isotropic: during the foaming process, viscous forces cause the cells to be elongated

in the rise direction, and therefore the material response in this direction is stiffer, i.e, E ′/E > 1. The

ratio of the modulus in the rise direction to that in the perpendicular-to-rise direction is indicative of the

extent of elongation of the cells.

Let’s take rigid PVC foams as an example. The experimental data on the five elastic constants of DIAB

Divinycell H60 are provided by the DIAB group [48] and Tita et. al. [49], as shown in Table 2. Based on

the experimental data, one has E = 16.0 GPa, E ′ = 32.0 GPa, ν = 0.29, ν ′ = 0.28, and G = 15.0 GPa,

and the elastic stiffness matrix, E, reads:

E =



18.8678 6.4647 7.0931 0 0 0

6.4647 18.8678 7.0931 0 0 0

7.0931 7.0931 35.9721 0 0 0

0 0 0 30.0000 0 0

0 0 0 0 30.0000 0

0 0 0 0 0 12.4031


GPa (39)

By adopting the formulation provided by Case C, and determining the unknown parameters ai (i =

1, 2, 3, 4) by minimizing
√∑

i,j

|E∗ij − Eij|2, one has a1 = 0.0378 GPa−1, a2 = 0.0109 GPa−1, a3 = 1.2882 GPa−1,
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and a4 = 0.0026 GPa−1, which gives the following results:

E∗ =



18.6261 5.8339 7.7705 0 0 0

5.8339 18.6261 7.7705 0 0 0

7.7705 7.7705 35.9102 0 0 0

0 0 0 30.0000 0 0

0 0 0 0 30.0000 0

0 0 0 0 0 12.8046


GPa (40)

It can be seen that the match between E and E∗ obtained from Case C is not very accurate but still

satisfactory. Fig. 6 plots the curves for the values and the ratios of Ei (i = N,M,L) as a function of θ.

For Case D, the optimized microplane parameters give:

E∗ =



18.8678 6.4647 7.0931 0 0 0

6.4647 18.8678 7.0931 0 0 0

7.0931 7.0931 35.9721 0 0 0

0 0 0 30.0000 0 0

0 0 0 0 30.0000 0

0 0 0 0 0 12.4031


GPa (41)

which basically coincides with E. The results for the values and the ratios of Ei (i = N,M,L) as a function

of θ are shown in Fig. 6.

7 Comparison between Microplane Model with Orientation Dependent Moduli and Spectral

Stiffness Microplane Model

Note that Eqns. (12)-(14) are just assumptions on the form of Ei (i = N,M,L), and the actual form of Ei

can be obtained only when the microplane model is under double constraint, which is derived through the

spectral stiffness microplane model. It is worth then studying the accuracy with which the non-spectral

formulation approximates the actual microplane stress distribution.

By taking the Boryeong shale again as reference, the distributions of the normal strain component, εN ,
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on a generic microplane sphere caused by different types of macroscopic strains are shown in Fig. 8. It

has six sub-figures, corresponding to the the distribution of εN on the microplane sphere under uniaxial

strain ε11, ε22, and ε33, and shear strain ε23, ε13, and ε12, respectively. Each sub-figure includes one

three-dimensional plot and three contours plots on the x1-x3 plane, the x2-x3 plane and the x1-x2 plane,

respectively. In a similar manner, the distributions of the normalized normal stress component, σN , are

shown in Fig. 9. For the purpose of comparison, Fig. 10 plots the distributions of the normalized normal

stress component σN based on the assumption that σN = ENεN , where EN = 1/(a1 sin2 θ + a2 cos2 θ) as

given in Case C. It can be seen that, while not an exact match, the stress distribution obtained from

the formulation in Case C matches closely with the actual stress distribution. The deviation of σN based

on orientation variation microplane model from the one based on spectral stiffness microplane model is

typically in the range of 11% to 28%: the deviation under uniaxial strain ε11 or ε22 is less than 20%; the

deviation under uniaxial strain ε33 is less than 28%; and the deviation under shear strain ε23, ε13, or ε12 is

less than 11%.

The actual EN can be obtained by EN = σN/εN , where εN and σN are given as follows:

εN = sin2 θ[γ1(cos2 φ− sin2 φ) + 2
√

2ε6 sinφ cosφ] + γ2(− sinω sin2 θ/
√

2 + cosω cos2 θ) (42)

+γ3(cosω sin2 θ/
√

2 + sinω cos2 θ) + 2
√

2 sin θ cos θ(ε4 sinφ+ ε5 cosφ)

σN = λ1 sin2 θ[γ1(cos2 φ− sin2 φ) + 2
√

2ε6 sinφ cosφ] + λ2γ2(− sinω sin2 θ/
√

2 + cosω cos2 θ) (43)

+λ3γ3(cosω sin2 θ/
√

2 + sinω cos2 θ) + 2
√

2λ4 sin θ cos θ(ε4 sinφ+ ε5 cosφ)

with γ1 = (ε1−ε2)/2, γ2 = − sinω(ε1+ε2)/
√

2+ε3 cosω, and γ3 = cosω(ε1+ε2)/
√

2+ε3 sinω. Fig. 11(a)-(c)

plot the actual EN under different macroscopic strains, and Fig. 11(d) plots EN = 1/(a1 sin2 θ+ a2 cos2 θ)

as assumed in Case C. It can be seen that while the EN assumed in Case C is a function of θ only, the

actual EN is a function of not only θ but also φ and the macroscopic strain.

8 Concluding Remarks

This contribution has studied the extension of the microplane formulation to transversely isotropic mate-

rials such as shale rock, foams and ceramics among others. Two possible approaches were investigated,
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namely: 1) the spectral decomposition of microplane strains; and 2) the introduction of orientation-

dependent microplane elastic moduli.

It was shown that the spectral stiffness decomposition provides the only rigorous approach for the

description of microplane strains and stresses in transverse isotropy. However, an approximation almost

as accurate could be obtained by making the elastic microplane moduli a function of the microplane ori-

entation. It was shown that the latter approach can span a broad range of macroscopic elastic properties

compared to the thermodynamic restrictions on the anisotropic parameters. Further, the approximated

functions have the advantage to provide a diagonal microplane elastic matrix which makes easier to guar-

antee work consistency and, more importantly, makes the formulation of inelastic boundaries easier.

It is concluded that, while the combination of the spectral stiffness decomposition theorem with the

microplane approach represents a powerful and rigorous way to capture the elastic behavior of anisotropic

materials, it makes the definition of inelastic boundaries slightly more complicated. The spectral stiffness

decomposition is recommended in cases such as for unidirectional composites, in which the material behaves

almost linearly until failure and an accurate description of the elastic behavior is necessary. Further, it is

the only choice when the elastic parameters of the material are beyond the range which can be described

by the second approach. For cases in which it is important to capture anisotropy but the material behaves

mainly inelastically (as it is the case for shale rock), the second approach is better since it provides a

simpler framework for the definition of inelastic boundaries.
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Table 1: The Five Elastic Constants of Boryeong Shale

Elastic Constants Experimental Data [42] Data Generated by Microplane Model
Young’s modulus parallel to bedding, E (GPa) 34–45.8 37.30
Young’s modulus perpendicular to bedding, E′ (GPa) 16.5–20.5 18.40
Poisson’s ratio parallel to bedding, ν (-) 0.13–0.23 0.15
Poisson’s ratio perpendicular to bedding, ν′ (-) 0.14–0.23 0.16
Shear modulus, G (GPa) 6.2–12.0 12.00

Table 2: The Five Elastic Constants of DIAB Divinycell H60

Elastic Constants Experimental Data [49, 48] Data Generated by Microplane Model
Young’s modulus in transverse direc-
tion, E (GPa)

13.0–19.0 16.0

Young’s modulus in rise direction, E′

(GPa)
31.0–33.0 32.0

Poisson’s ratio in the plane perpen-
dicular to rise direction, ν (-)

0.29–0.31 0.29

Poisson’s ratio in rise direction, ν′ (-) 0.04–0.44 0.28
Shear modulus, G (GPa) 15.0–20.0 15.0
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(a) (b)

θ

Figure 1: (a) Coordinate system for transversely isotropic materials; and (b) spherical coordinate system.
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Case D Case D

Figure 2: The contour plot of t for each case. The results are compared with the thermodynamic restrictions on
elastic constants of transversely isotropic materials. The figure appears in color in the electronic version of this
article.
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Figure 3: The values of t(α, β, γ), ν(α, β, γ), and ν ′(α, β, γ) for any α > 0, β > 0, and γ > 0 for each case
with different values of t indicated by different colors. The figure appears in color in the electronic version of this
article.
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Figure 4: The ranges of ν and ν ′ obtained from microplane model based on Case C and Case D when 0 < E′/E ≤
1, respectively. The ranges of ν and ν ′ for various types of shale studied by existing literature [40, 41, 42, 43, 44, 45]
are also plotted. The figure appears in color in the electronic version of this article.
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Case C

Case C
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Figure 5: The results for the values and the ratios of Ei (i = N,M,L) as a function of θ obtained from Case C
and Case D for Example A, respectively.
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Figure 6: The results for the values and the ratios of Ei (i = N,M,L) as a function of θ obtained from Case C
and Case D for Example B, respectively.
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Figure 7: The variation of apparent Young’s modulus with anisotropy angle in comparison with experimental
data provided by Cho et al. [42].
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Figure 8: The distribution of the normal strain component, εN , on a generic microplane sphere caused by different
types of macroscopic strains for the Boryeong shale with E = 37.3 GPa, E′ = 18.4 GPa, ν = 0.15, ν ′ = 0.16, and
G = 12.0 GPa.
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Figure 9: The distribution of the normalized normal stress component, σN , on a generic microplane sphere
caused by different types of macroscopic strains for the Boryeong shale with E = 37.3 GPa, E′ = 18.4 GPa,
ν = 0.15, ν ′ = 0.16, and G = 12.0 GPa.
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Figure 10: The distributions of the normalized normal stress component σN based on the assumption that
σN = EN εN , where EN = 1/(a1 sin2 θ + a2 cos2 θ) as given in Case C, caused by different types of macroscopic
strains for the Boryeong shale with E = 37.3 GPa, E′ = 18.4 GPa, ν = 0.15, ν ′ = 0.16, and G = 12.0 GPa.
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(a) (b)

(d)(c)

Figure 11: (a) plots the actual EN under ε11 = ε22 = ε33 = 1 and ε13 = ε23 = ε12 = 0; (b) plots the actual EN
under ε11 = ε22 = ε33/4 = 1 and ε13 = ε23 = ε12 = 0; (c) plots the actual EN under ε11 = ε22 = ε33 = ε12 = 1 and
ε13 = ε23 = 0; and (d) plots EN = 1/(a1 sin2 θ + a2 cos2 θ) as assumed in Case C.
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