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Abstract:
Static and dynamic analysis of the fracture tests of fiber composites in hy-

draulically servo-controlled testing machines currently in use shows that their
grips are much too soft and light for observing the postpeak softening. Based
on static analysis based on the second law of thermodynamics, confirmed by dy-
namic analysis of the test setup as an open system, far stiffer and heavier grips are
proposed. Tests of compact-tension fracture specimens of woven carbon-epoxy
laminates prove this theoretical conclusion. Sufficiently stiff grips allow observa-
tion of a stable postpeak softening, even under load-point displacement control.
Dynamic analysis of the test setup as a closed system with PID controlled in-
put further indicates that the controllability of postpeak softening under CMOD
control is improved not only by increasing the grip stiffness but also by increasing
the grip mass. The fracture energy deduced from the area under the measured
complete load-deflection curve with stable postpeak is shown to agree with the
fracture energy deduced from the size effect tests of the same composite, but the
size effect tests also provide the material characteristic length of quasibrittle (or
cohesive) fracture mechanics. Previous suspicions of dynamic snapback in the
testing of stiff specimens of composites are dispelled. Finally, the results show
the stress or strain based failure criteria for fiber composites to be incorrect, and
fracture mechanics, of the quasibrittle type, to be perfectly applicable.
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1. Introduction

The material failure criteria for fiber-polymer composites have for a long time
been expressed in terms of stresses or strains. Examples are the maximum
stress, maximum strain, deviatoric strain energy, and tensor polynomial cri-
teria [1], sanctioned by a worldwide comparison exercise [2, 3, 4]. Their gen-
eral applicability, however, is an in-grained antiquated myth, surviving from
pre-computer age. Such criteria apply to plastic materials, which exhibit
no strain localization instability, no spurious mesh sensitivity, no material
characteristic length and no deterministic size effect.

In reality, fiber composites are quasibrittle materials (which also include
concrete—as the archetypical case, tough ceramics, rocks, sea ice, rigid foams,
bone, etc.). All quasibrittle materials fail by localization of softening damage
into a discrete fracture. In contrast to plasticity, they exhibit a material
characteristic length. This inevitably leads to a strong energetic (or non-
statistical) size effect when geometrically similar structures of different sizes
are compared [5, 6, 7, 8, e.g.]. On sufficiently small scale, all brittle materials
behave as quasibrittle.

Two basic types of size effect must be distinguished. Here the focus is on
the Type 2 size effect, which occurs when a large notch or stress-free crack
exists at maximum load. This size effect is weak for small specimens not
much larger than the periodicity of the weave or the size of the representa-
tive volume element (RVE), for which it may seem that the stress or strain
failure criteria work. But with increasing structure size, there is a gradual
transition to the strong size effect of fracture mechanics caused by stored
energy release associated with stress redistribution during damage. It may
be noted that the Type 1 size effect occurs in structures that fail right at
the initiations of a macro-crack from a damaged RVE at a smooth surface
in unnotched specimens, and represents a combination of deterministic and
statistical (or Weibull) size effects (omission of the deterministic aspect led
to an erroneous conclusion [e.g.][9], namely that the Weibull modulus was a
geometry-dependent variable rather than a material constant).

At mesh refinement, the use of stress or strain criteria inevitably causes a
loss of objectivity, spurious mesh sensitivity and convergence problems [7, 10].
For this reason, as well as fundamentally, realistic failure analysis must be
based on quasibrittle fracture mechanics, which evolved since its dawn in the
mid 1970s into a mature and widely accepted theory. Fracture mechanics
is well accepted for delamination fracture of layered two-dimensional (un-
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stitched) fiber-composite laminates. There is even an ASTM test to deter-
mine the corresponding fracture energy [11] (although this test has just been
shown to require a correction for transitional size effect [16].

The fact that quasibrittle fracture mechanics must apply to in-plane or
flexural loading of fiber composite laminates was demonstrated by the nu-
merous size effect tests performed, beginning in 1996 [8, 12, 13, 14, 15] on
geometrically similar notched specimens. However, to many engineers and
researchers the size effect tests have been unconvincing, for two reasons: 1)
some of them erroneously considered the size effect to be statistical, due to
material randomness (although this is possible only for Type 1 failures); 2)
others rejected the cohesive crack model because a gradual postpeak soft-
ening could never be observed in experiments. The specimens always failed
explosively right after attaining the maximum load, and the load applied by
the testing machine dropped suddenly to zero. The sudden drop seemed to
indicate a LEFM behavior, but the LEFM clearly did not fit test data, and
also suggested a snapback, but the area under the snapback curve would give
a much smaller fracture energy than the LEFM testing.

In this paper (the basic idea of which has been documented on July 4,
2016, in arXiv submission [17]), it is shown that the foregoing objection is
invalid, that postpeak can be measured, in a stable test, and that quasibrittle
fracture mechanics with transitional size effect is perfectly applicable to fiber-
polymer composites.

Highly Stiff Test Frame with Fast Servo-Control via CMOD

A similar history occurred long ago for concrete and rock. Until the 1960s it
was believed that concrete and rock explode at maximum load and the load
applied by the testing machine drops suddenly to zero. Then, beginning
in 1963, several researchers, including Hughes, Chapman, Hillsdorf, Rüsch,
Evans and Marathe [18, 19, 20, 21] came up with the idea of using, for both
tensile and compressive tests of concrete, a much stiffer loading frame and fast
hydraulic servo-control. Suddenly, a gradual postpeak decline of the compres-
sive or tensile load could be observed. Similar efforts to stabilize postpeak
in compression testing of rock were made, beginning 1963, by Neville G.W.
Cook and Charles Fairhurst at University of Minnesota [22, 23, 24]. The sta-
bility of postpeak was further enhanced by controlling the test electronically
with a gage measuring the crack-mouth opening displacement (CMOD). A
servo-controlled stiff machine of MTS Corporation was built in 1967.

3



This discovery opened a revolution in the mechanics of concrete and rock,
and was one essential factor that prompted the development of quasibrittle
fracture mechanics. The stabilizing effect of machine stiffness was mathe-
matically demonstrated by static stability analysis in [10], which led to an
equation for the required machine stiffness as a function of the maximum
steepness of the postpeak load-deflection curve (see also [6]).

Unfortunately, the same measures did not work for fiber composites. The
same stiff frames with fast servo-control did not suffice. The CMOD control
of notched compact tension specimens and of edge-notched strips was tried at
Northwestern, but did not work. Neither did the control of crack tip opening
displacement (CTOD). The reason will be clarified here.

Static Criterion of Stability

For the purpose of static analysis, test system can be considered as the
coupling of two elements: 1) the testing machine frame of stiffness Km with
the specimen grips (or fixtures) of stiffness Kg form one elastic element of
stiffness Km, and 2) the test specimen, of tangential (or incremental) stiffness
Ks is the second element. Figure 1 shows a schematic of the testing frame.

Based on the second law of thermodynamics, the test setup becomes
unstable if the there exists a perturbing load that produces negative work
∆W on the test setup, thus causing an increase of entropy, ∆S (in detail see
[6, chpt.10]). So, we imagine a perturbing load δP to be applied axially at
the load-point of the test specimen while the system in in equilibrium. The
combined stiffness of the machine with the grips is Kmg = 1/(1/Km + 1/Kg)
and the total stiffness Kt resisting δP is Kmg +Ks. The displacement under
δP in the direction of δP is δv = δP/Kt, and

∆W = −T ∆S = 1
2
δP δv = 1

2
Kt (δv)2 (1)

where T = absolute temperature. The equilibrium of the system is stable if
and only if ∆W > 0, which requires that Kt > 0 or

Kt =
1

1/Km + 1/Kg

+Ks > 0 (2)

Consider now a typical 20 ton testing machine (e.g., MTS) used in the
testing of composites and a typical compact tension specimen consisting of
24 layers of woven carbon fiber epoxy composites for a total thickness of 5.4
mm (see Figure 2). The typical characteristics are:
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• Machine frame stiffness: Km = 260 MN/m;

• Stiffness of standard specimen grips: Kg = 0.768 MN/m;

• The steepest slope of the measured postpeak load-deflection curve of the
test specimen: Ks = −0.830 MN/m;

• Mass of machine frame: mm = 500 kg;

• Mass of grips (or fixture): mg = 0.919 kg;

• Characteristic halftime of machine hydraulics delay: τ = 0.02 s (de-
fined as the time to approach halfway to a suddenly changed setting of
electronic control).

Using these value, we find from Eq. (2) that

Kt = −0.06426 MN/m < 0 ... unstable (3)

i.e., the tested specimen is unstable. This agrees with the common wisdom
of the last 50 years—it is impossible to observe gradual postpeak softening
in tensile tests of fiber composites. But is it, really?

The grip stiffness is an aspect that has so far eluded attention. It has
generally been assumed that the standard grips provided by the manufactur-
ers are stiff enough. But comparison of Kg with Km suggests otherwise. It
was, therefore, decided to produce special massive grips (Fig. 3), with the
following stiffness and mass;

• K̃g = 192.4 MN/m (= 74% Km)

• m̃g = 9.419 kg (= 10 mg)

Compared to the current standard grips, they are about 10-times heavier and
250-times stiffer. Eq. (2) gives:

Kt = 109.6 MN/m > 0 ... stable (4)

Eureka—stability is achieved!
Using these grips, the composite compact tension specimens (Fig. 3)

exhibited stable progressive softening, and not only under CMOD control
but also under load-point control. The grips overcame the puzzling feature
that the fracture energy Gf deduced from the size effect tests was much larger
that the maximum possible area under a snapback curve. In fact, the area
indicated by Gf required a rather gradual progressive softening, and this is
what is now observed with the new grips.
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From Eq. (2), one can obtain the minimum grip stiffness, necessary for
stability, based on the estimated steepest postpeak slope Ks:

[Kg]min =
1

1/|Ks|max − 1/Km

(Ks < 0) (5)

Test Stabilization by CMOD or CTOD Control

The usual way to stabilize postpeak softening is to control the Crack Mouth
(or Crack Tip) Opening Displacement (CMOD or CTOD). Let w be the
relative displacement across the crack mouth or across the crack-tip region,
and denote as F a fictitious force working on w although in reality F = 0.
The incremental (or tangential) cross compliance Csc between the load, P ,
and displacement w is derived by considering the relations:

du = CsdP + CscdF (6)

dw = CscdP + CccdF (7)

where P = applied force; Cs = 1/Ks = direct (load-point) incremental (or
tangential) compliance of the specimen. According to the LEFM [7, e.g.],

Csc =
2

bDE ′

∫ α

0

k(α′)kc(α
′)dα′ (8)

where α = a/D, a = crack length, D, b = specimen dimension (or size) and
width; k(α), kc(α) = dimensionless stress intensity factors due to applied
load P and to fictitious load F ; k = KIb

√
D/P where KI = actual stress

intensity factor; for plane stress E ′ = E = Young’s modulus, and for plane
strain E ′ = E/(1−ν2) where ν = Poisson ratio. Because F = 0, Eqs. (6)–(7)
reduce to du = CsdP and dw = CscdP or

du = rsc dw, rsc =
Cs
Csc

(9)

The same equations apply to CTOD control, if w is redefined as the crack
tip opening displacement.

The advantage of using CMOD or CTOD control is that, during the
fracture test, w always increases. So, by controlling w, the postpeak softening
can be measured even if the specimen is unstable under load-point control.
But there is a caveat—the response of testing machine with its hydraulics
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must be fast enough. For notched concrete and rock specimens tested in
the servo-controlled stiff machines introduced since 1963 it has been fast
enough. But for strong and very light specimens, such as those of woven
laminates, it has obviously not been fast enough, since all the attempts to
measure the postpeak by means of CMOD of CTOD control have failed. To
explain, we turn to dynamic analysis of stability (as thermodynamics applies
to equilibrium states only).

Using Mass to Make Hydraulics Response Delay Tolerable

For half a century, the impossibility to obtain a stable postpeak softening un-
der CMOD or CTOD control have been blamed on some unspecified peculiar
property of composites. However, the present discovery of stable postpeak
with very stiff grips shows that there is nothing peculiar in the material be-
havior of composites. So the only possible explanation why CMOD alone
cannot control the postpeak test is that the response of hydraulics is not
fast enough (even with the optimal PID setting). To check it, let us conduct
dynamic analysis of test setup, first as an open system.

The test setup may be idealized as shown in Fig. 1, where u(t) is the
load-point displacement of the test specimen; v(t) is the displacement at the
attachment of the grips (or fixture) to the loading frame, and y(t) is the input
from the electronic control, representing the prescribed load-displacement
history (t = time). The effective mass of the machine frame is denoted as
M , and the mass of the grips as mg, including the mass of the specimen
(which is, however, negligible in the case of composites). The mass and
stiffness of the load cell are considered to be included in M and KM .

To control the test, the controller of the machine sends a signal to the
servo-valve. The hydraulic pressure on the piston increases and the piston
moves, but not immediately. The halftime, τ , of the hydraulics response
delay, τ , which is of the order of 0.02 s (and is assumed to correspond to the
optimized PID setting), may be modeled by a damper of viscosity constant

η = Km τ (10)

Because the system can be considered incrementally linear, it will suffice
to analyze the response to a sudden unit change of y, i.e., y = H(t) where H
denotes the Heaviside step function. Because only infinitely small increments
are considered, the response may be considered to be linear and Ks to be
constant, characterizing the steepest postpeak slope of the postpeak load

7



displacement curve (Ks < 0). We also assume that no unloading would
occur (because, for unloading, Ks would switch to a positive value).

The equations of motion can be derived from the Lagrange equations:

∂

∂t

(
∂L

∂v̇

)
− ∂L

∂v
+
∂D
∂v̇

= 0 (11)

∂

∂t

(
∂L

∂u̇

)
− ∂L

∂u
+
∂D
∂u̇

= 0 (12)

where L = T − V (13)

T = 1
2
Mv̇2 + 1

2
mgu̇

2 (14)

V = 1
2
KM(v − y)2 + 1

2
Kg(v − u)2 + 1

2
Ksu

2 (15)

D = 1
2
KM τ(v̇ − ẏ)2 (16)

where the superior dots denote derivatives with respect to time t. Eqs. (11)
and (12) yield the following equations of motion:

Mv̈ +KM(v − y) +KM τ(v̇ − ẏ) +Kg(v − u) = 0 (17)

mgü+Kg(u− v) +Ksu = 0 (18)

where KM τ was substituted. It is convenient to rewrite the equations of
motion in the phase space by introducing new variables:

x1 = u, x2 = u̇, x3 = v, x4 = v̇ (19)

Substitution into the equations of motion gives a system of first-order ordi-
nary linear differential equations in matrix form:

ẋ1
ẋ2
ẋ3
ẋ4

 =


0 1 0 0

−Kg+Ks

mg
0 −Kg

mg
0

0 0 0 1
Kg

M
0 −KM+Kg

M
−KM τ

M




x1
x2
x3
x4

+


0
0
0

KM

M
y + KM τ

M
ẏ


(20)

The homogeneous part of this first-order matrix differential equation is sat-
isfied by functions of the form xn = ane

λt (n = 1, 2, 3, 4). Substitution into
the homogeneous part of the foregoing matrix differential equation yields
a homogeneous matrix algebraic equation for the column matrix of an. It
has a nonzero solution if and only if λ is equal to the eigenvalues of the
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square matrix in Eq. (20). The solution is stable if and only if, for all the
eigenvalues,

Re(λ) < 0 (21)

For calculations, we consider first the aforemention machine and test
properties with the standard (light) grips. Then the following column matrix
of eigenvalues is calculated:

{λ } =


80.65

−1.035 · 104

−77.17
−53.87

 (22)

The presence of a positive eigenvalue, λ1, indicates that, with the normal
grips, the test of postpeak is unstable, which means that postpeak softening
cannot be observed, as known from experience. Also note that the eigenvalues
are real, which means that the stability loss is a divergence rather than flutter
(oscillatory instability). Thus the static stability check in Eq. (3) is sufficient.

Second, consider the new grips of mass mg = 10mg0 = 9.419 kg and
stiffness Kg = 10Kg0 = 2.6 · 109 N/m (Fig. 3). All the other parameters
remain the same. Calculations yield the eigenvalue matrix (with i2 = −1):

{λ } =


−15.78 + 4.52i · 103

−15.78− 4.52i · 103

−1.032 · 104

−50.129

 (23)

All Re(λ)-values are negative. So the specimen is stable, even under load-
point control. This confirms the previous finding by static stability analysis,
Eq. (4).

Adding Mass to Achieve CMOD Controllability with Soft Grips

Why hasn’t the CMOD or CTOD control worked with the standard grips?
Obviously, it would have to work if the response of the controls were in-
finitely fast. But with a hydraulic system this is impossible. The specimen
accelerates fast in dynamic motion before the hydraulics can adjust the dis-
placement.

Intuitively, the way to slow down the acceleration is to attach mass to the
grips. So, consider the grip mass mg to be increased to m̄g = 10mg, 100mg
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and 1000mg, without increasing the grip stiffness. This leads to the sets of
eigenvalues listed under the diagrams of Fig. 4. All of these sets include an
eigenvalue with Re(λ) > 0, which means the specimens are unstable—but
unstable under controlled load-point displacement.

With a view of CMOD control, let us calculate the response of the system
for input y(t) = H(t) (Heaviside step function) under four initial conditions
u = u̇ = v = v̇ = 0. The solution is obtained as a sum of the particular
solution and a linear combination of four eigenvectors. The response curves
of u(t) are plotted in the four diagrams of Fig. (4). Note that, with in-
creasing grip mass, the time at the onset of sharp exponential acceleration
of displacement u(t) (briefly ‘onset time’) greatly increases.

To compare the onset time with the performance of the hydraulics, we
plot in the figure vertical lines at time of 0.1 s, which is 5-times longer than
the halftime of the hydraulics delay. We assume that by this time the CMOD
control should be able to enforce the specified load-point displacement u with
sufficient accuracy.

In the first diagram of Fig. 4, which corresponds to the standard (light)
grips, the rise of exponential acceleration of u(t) begins much before the
critical time of 0.01 s. Obviously, the controls are too slow to prevent this
acceleration, which inevitably leads to sudden failure. However, as seen in the
third diagram, the grip mass of 100mg postpones the acceleration well beyond
0.1 s, and here the hydraulics controlled by the CMOD should evidently be
able to impose the required load-point displacement.

According to the second diagram for 10mg, it seems the exponential accel-
eration could also be prevented, but better informed analysis of the hydraulic
system and trial testing may be needed. And the fourth diagram, for 1000
mg, is obviously an overkill.

Stability Analysis of Closed-Loop PID System under CMOD Con-
trol

The closed-loop control of the modern testing machines is based on a Proportional-
Integrative-Differential (PID) signal of the error wD−w where wD = desired
Crack Mouth Opening Displacement (CMOD) and w = CMOD measured
by the extensometer; see the schematic of the control loop in Fig. 5.

Combining Eqs. (6) and (7) and integrating over a small time interval
with constant tangential stiffnesses, one gets w = Csc/Csu where u(0) =
w(0) = 0 may be assumed. Accordingly, the equations of motion of the
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system may be written as:

mü+Kg (u− v) +Ks (u) = 0

Mv̈ +KM

[
ζ (v, u, y) + τ ζ̇ (v, u, y)

]
+Kg (v − u) = 0

ζ (v, u, y) = v − y +
(
Csc

Cs
u− wD

)
Kp +

(
Csc

Cs
u̇− ẇD

)
KD

+KI

∫ t
0

(
Csc

Cs
u− wD

)
dt

′

(24)

where Kp is the proportional gain of the PID control, and Kg is the stiffness
of the grips. Introducing the transformation:

x1 = u, x2 = u̇, x3 = v, x4 = v̇, x5 =

∫
x1dt (25)

the system of equations becomes:

ẋ1 = x2

ẋ2 = − 1
m

[Kg (x1 − x3) +Ks (x1)]

ẋ3 = x4

ẋ4 = − 1
M
{KM [x3 + αx1 + βx2 + γx5]

+KMτ
[
x4 + αx2 − β

m
Kg (x1 − x3)− Ks

m
βx1 + γx1

]
+Kg (x3 − x1)} −KMχ (y, wD)

ẋ5 = x1

(26)

where α = Csc

Cs
Kp, β = Csc

Cs
Kd, γ = Csc

Cs
Ki and

χ = [y − αwD − βẇD − γ
∫
wDdt

′
+ τ (y − αẇD − βẅD − γwD) (27)

The foregoing system is stable if the linearized system is stable [6, chpt.3].
Stability requires that all the eigenvalues λ of the matrix of equations (26),
given below, be negative:

−λ 1 0 0 0

− 1
m

(
Kg + ∂Ks

∂x1

)
−λ Kg

m
0 0

0 0 −λ 1 0

R1 −βKM

M
R2 −KM τ

M
−Kmγ

M
− λ

1 0 0 0 −λ

 (28)
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where R1 =
Kg − αKM

M
+
KMτ

M

[
γ + β

∂Ks/∂x1 +Kg

m

]
(29)

R2 = −KM +Kg

M
+
βτKgKM

mM
(30)

The calculation results shown in Figs. 6 and 7 show the effects of the
mass and thickness of the grips, respectively. The stiffness has a big effect on
stability but, at first surprisingly, the mass has none. That calls for discussion
from a different viewpoint—controllability.

Controllability versus Stability

According to Liapunov’s definition of stability [6, Sec. 3.5], the response xi(t)
of a dynamic system with initial state x0i is stable if, for an arbitrarily small
positive number ε, there exists a positive number δ such that the response
to any change of the initial state x0i smaller than δ will never deviate from
xi(t) by more than ε. But, in an open system with active input y(t), what
matters is the controllability.

A state x′i is controllable at time t′ if there exists an input y(t) that
transfers the state xi(t) from x′i to the specified state x∗i within some finite
time interval ∆t. If this is true for all t′, the system is controllable. Generally,
a stable system is controllable, but a system can be controllable even if it
is unstable (note that modern aircraft fly with wings that are unstable but
controllable), While, as we showed, the mass has no effect on stability, it has
a big effect on controllability, as is obvious from Fig. 4. The following five
observations can be made:

1. Although increasing the mass of the grips decreases the most critical
eigenvalue (a tenfold increase of mg reduces the most critical eigenvalue
bu 70%), stability can be reached only with infinite mass.

2. The proportional gain of the PID control, Kp, is the one having the
greatest effect on stability. Increasing the mass of the grips does not
increase the range of values of Kp leading to stability.

3. The derivative and integrative gains play a secondary role in stability
compared to the proportional gain. Increasing mg does not have a very
significant effect on these parameters.

4. A huge effect of grip stiffness stability (exemplified here by stability
attainment, even without CMOD control, with a mere 9% stiffness
increase) is not the only effect of grip stiffness, Kg. A further effect
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is a significant contribution to the proportional gain. Increasing the
stiffness by 2% reduces the minimum value of Kp leading to stability
by 80%, thus making the test control much easier.

5. On the other hand, the grip stiffness does not have a strong effect on
the integrative and derivative gains.

Experimental Verification of Stable Postpeak Softening of Compact
Tension Specimens

Fig. 3 shows the compact-tension fracture specimen of woven carbon-epoxy
specimens used to study the postpeak behavior and determine the fracture
energy Gf of the material and the general view of the test setup in a MTS
testing machine.

Fig. 8 shows the photos of the current standard grips (on the left) and
of the proposed massive grips (on the right) that successfully stabilized the
postpeak.

Fig. 9 demonstrates several stable postpeak load-delection diagrams mea-
sured with the proposed stiff grips on the compact-tension specimens.

Agreement of Gf from Size Effect Tests with Gf from the Area
under Complete Load-Displacement Curve

The area A under the complete stable load-displacement curve of the fracture
specimen allows determining the fracture energy, Gf , of the material; Gf =
A/Lb where l = length of the broken ligament and b = specimen thickness
(provided that energy dissipation outside the fracture is negligible.

Another, easier, way to determine the fracture energy is the size effect
method [7]. For this purpose it was more convenient to use tensile tests of
geometrically similar edge-notched strip specimens of three different sizes,
as shown in Fig. 10. This method uses only the maximum loads and the
postpeak softening is not needed. So it sufficed to conduct the tests with
the standard grips, even though they failed right after the peak load. The
fracture energies obtained from the size effect and from the postpeak were
respectively:

from size effect: Gf = 73.7 N/m and from postpeak: Gf = 78 N/m
(31)

It is remarkable that the difference between these two values is only 5.8 %.
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Nonexistence of Snapback and of Conflict with Size Effect

Because it was impossible to observe postpeak softening it has been believed
for decades that the fracture specimens of composites exhibit a severe snap-
back. Thanks to stiffening the grips, we now see that this view was incorrect.

The misconception of snapback further shed false doubts on the applica-
bility of fracture mechanics to fiber composites. The area under the supposed
snapback curve, which must in any case be smaller than the area under a
load-deflection curve with sudden vertical load drop from the peak-load point,
gave a fracture energy much smaller than that deduced from the size effect,
or from the measured drop of complementary energy of test specimen.

For some investigators, this severe mismatch was another reason to con-
sider quasibrittle cohesive fracture mechanics as inapplicable to fiber com-
posites. Now we see that this interpretation was mistaken.

The present analytical and experimental results, and especially Eq. (31),
prove that fracture mechanics is perfectly applicable to fiber composites.

Why the Postpeak in Delamination Fracture Tests Has Been Sta-
ble?

To determine the delamination fracture energy of the same carbon composite,
the ASTM standard test specimen [11] was used. In these tests, the gradual
postpeak softening was stable, even with the standard grips. Why? The
explanation is that the delamination specimens are much softer than the
compact tension specimens. If |Ks| is small enough, Kt ceases to be negative
since the first term in Eq. (2) is always positive. We see that the required
stiffness of the grips increases with the stiffness of the fracture specimen.

Conclusions

1. The specimen grips (or fixtures) of the contemporary hydraulic servo-
controlled testing machines do not have sufficient stiffness and mass to
enable stable measurement of postpeak softening of fracture specimens
of very strong and very light materials such as fiber composites.

2. By stability analysis based on the second law of thermodynamics, it is
shown that the cause of pervasive failure to observe postpeak softening
during the past half century decades of composites testing has been the
instability due to insufficient stiffness and mass of the specimen grips.
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3. Based on static stability analysis of the test setup, it is proposed to use
grips that are stiffer by about two orders of magnitude. Calculations
show that, in this way, stability is achieved.

4. Experiments on compact-tension fracture specimens of woven fiber-
polymer composites confirm the observability of stable postpeak, not
only for the CMOD control but even for the load-point displacement
control.

5. The grip stiffness required for stability increases with the stiffness of
the fracture specimen.

6. Calculations of the eigenvalues of the equations of motion of the test
setup confirm that the grip stiffness has a huge effect on static as well
as dynamic stability, makes the PID control much easier.

7. Calculations also indicate a large effect of the increase of mass of the
grips on controllability of the postpeak response under PID control,
although the effect on stability is nil.

8. Calculations further they indicate that, if a sufficient mass is rigidly
attached to the existing soft grips, the postpeak response under PID
control of the CMOD should become controllable.

9. The present stability analysis also explains why the switch in the 1960s
to far stiffer testing frames sufficed to stabilize the postpeak softening
in concrete and rocks, but not in composites. The specimens of con-
crete and rock are generally far more massive and their attachments
(consisting of flat contacts, glued in the case of tension) have naturally
been far stiffer than those used for fiber composites.

10. The previous view that the impossibility of measuring postpeak soft-
ening necessarily implied a severe snapback is not correct. In the usual
compact-tension specimens there is no snapback.

11. The previous inference that the smallness of the area under the sup-
posed snapback curve conflicted with Gf measured from the size effect
or from the energy release was thought to invalidate fracture mechanics.
This inference was false.

12. The present results prove that quasibrittle fracture mechanics, with
finite fracture process zone and a transitional size effect, is perfectly
applicable to fiber composites.

13. The present results also prove that the previously widespread use of
plasticity-based failure envelopes in terms of stress or strain has not
been correct.
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[5] Bažant, Z.P. (1984). “Size effect in blunt fracture: Concrete, rock, metal.” J.
of Engrg. Mechanics, ASCE, 110 (4), 518–535.
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Appendix: Details of Experiments

Materials

Experiments were conducted on woven composite specimens manufactured by com-
pression molding. A DGEBA-based epoxy resin was chosen as polymer matrix
whereas the reinforcement was provided by a twill 2x2 fabric made of carbon
fibers. The material was characterized following the ASTM standard procedures
[25] for testing under compact tension. The material was a [0◦]8 lay-up with a
constant thickness of approximately 1.8 mm.

Further experiments were conducted on fiberglass reinforced polyester (FRP)
composite, with the thickness of about 10 mm.

Specimen characteristics

The modified Compact Tension (CT) specimen geometry was recently developed
at Northwestern University research group to produce stable crack growth so that
the composite damage zone could be investigated. Initially, a 2 mm width notch
was created by using diamond band saw. Then, the notch was extended by using
artistic wire saw in order to create a shape notch tip of 0.2 mm in radius. The
CT specimen with a sharp notch tip is stable under displacement control and is
large enough so that the boundaries do not greatly affect the damage zone size or
shape.

The specimen was loaded in tension through pins located above and below the
notch. It was found that the pin holes cannot be made using steel drill bits because
the carbon fiber is harder than the steel from which the drill is made. To avoid
damage due to fiber tear-out and delamination around the holes caused by steel
drill bits, abrasive cutting with tungsten grinding bits for nonmetals was used to
create these holes. The specimen thickness of 5.4 mm sufficed to prevent of the
woven composite material.

Furthermore, intra-laminar size effect tests were conducted on single-edge-
notched tension (SENT) specimens (see Figure 10), using a [0◦]8 lay-up with a
constant thickness of approximately 1.9 mm. The SENT specimens were preferred
to double-edge notched tension (DENT) specimens because in these specimens
the response path bifurcates such that only one of the two cracks can propagate,
causing asymmetric response [26].

SENT specimens of three sizes (three for each size), geometrically scaled in
two-dimensions in the ratio 1:2:4, were tested. The specimen lengths, L + 2Lt
were, respectively, 120.5, 165.0, 254.0 mm, the gauge lengths 44.5, 89.0, 178.0
mm, the widths 20, 40, 80 mm, and the notch lengths 4, 8, 16 mm. The thickness
was 1.9 mm, and the tab length Lt = 38 mm, the same for al the sizes. The
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glass-epoxy tabs, for gripping purposes, were not scaled because they have no
appreciable effect on the store energy release and because fracture always occurs
away from the grips.

The first half of the notch of SENT specimens was cut by means of a diamond-
coated bend saw which provided a width of roughly 1 mm. The second half of
the notch was cut by a diamond-coated miniature blade, thanks to which a notch
width of only 0.2 mm was achieved in all cases. Accordingly, the resulting crack
tip radius was 0.1 mm, about 70 times smaller than the size of a Representative
Unit Cell (RUC) of the material.

The top surface of all the SENT specimens investigated was treated to allow
Digital Image Correlation (DIC) analysis. A thin layer of white paint was deposited
on a D ×D area embedding the crack. Then, black speckles of average size 0.01
mm were spray-painted on the surface after drying.

Testing

The Compact Tension (CT) test set-up is shown in Fig. 3. A universal testing
machine (of MTS) was used to load the CT specimens at the rate of 1 mm/min.
Tensile loading was applied through 20 mm diameter pins inserted through the
holes shown in Fig. 1a. An extensometer was attached to the specimens to measure
the pin opening displacement (POD). The load cell signal and the extensometer
signal were output and recorded.

Size Effect Tests on Single Edge-Notched Tension (SENT) Speci-
mens

After the completion of the experiments, the load and displacement data were
analyzed. Figure 11 shows, for the various sizes, the typical load-displacement plots
reported. It is worth noting that, for the largest specimen size, these curves are
almost linear up to failure, which is an indication of pronounced brittle behavior.

Right after reaching the peak load, the specimens used for size effect became
unstable for all the sizes and failed dynamically. This was no problem since the
size effect analysis does not require postpeak (note that stiff grips cannot stabilize
these specimens because the specimen itself is too soft and stores too much energy).
The failed specimens showed microcracks within the layers, and tow breakage or
pull-out. Delamination between the layers occurred before the peak load.

Note that that, according to strength-based criteria (e.g., Tsai and Wu [1]),
the nominal strength would not depend on the structure size. However, Table 3
does show a significant decrease of σN with an increasing characteristic size of the
specimen, which proves the strength based failure criteria to be incorrect.

19



From the size effect results, the initial fracture energy was obtained as Gf =
73.7 N/mm.

Compact Tension Test Results

Figure 9 gives the load vs. pin opening displacement (POD) curves of all the tested
specimens. For woven composite specimens, it can be seen that, the load vs. POD
curves are approximately linear up to the first load drop. After that, the crack
progresses in a series of small jumps which cause further load drops.

In contrast, the FRP specimens showed a large degree of non-linearity in the
load vs. POD curves. Figs. 9a,b and 9c,d show failure modes typical of woven
composites and FRP composite specimens. The failure of woven composite is char-
acterized by development of fiber breakage along the center line of the specimen
toward the back. A small amount of splitting can be observed on either side of the
fiber breaks, which caused flaking of the paint for the Digital Image Correlation
(DIC).

From the load vs. POD curves (Fig. 9), the fracture energy of the composites
can be estimated as [7]:

Gf =
W

b ll
(32)

where Gf = fracture energy, W = area under the load displacement curve, b
= thickness of the specimen and ll = ligament length. The calculated fracture
energies for woven composites are 76.34 N/mm and 79.74 N/mm for specimen 1
and specimen 2 respectively. These results are very close to the fracture energy
calculated from the size effect using the size effect test (since the size effect method
gives the fracture energy corresponding only to the area under the initial tangent
to the cohesive stress-displacement law, it appears the that this law should not
have a long tail of small slope). The fracture energies of FRP composites deduced
from the size effect were 14.16 N/mm and 13.09 N/mm for specimens 1 and 2,
respectively.
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Figure 2: Dimensions of 2D Woven Composite Specimens
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Figure 3: a) Experimental setup considered in the analysis, and b) new massive
grips designed to achieve stable postpeak
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Figure 8: a) Example of MTS standard grip and b) newly designed grips of
increased stiffness and mass
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fiber textile composites (c) and (d).
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