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Abstract:

A significant step in space exploration during the 21st century will be human settlement on Mars.

Instead of transporting all the construction materials from Earth to the red planet with incredibly high

cost, using Martian soil to construct a site on Mars is a superior choice. Knowing that Mars has long

been considered a “sulfur-rich planet”, a new construction material composed of simulated Martian soil

and molten sulfur is developed. In addition to the raw material availability for producing sulfur concrete

and a strength reaching similar or higher levels of conventional cementitious concrete, fast curing, low

temperature sustainability, acid and salt environment resistance, 100% recyclability are appealing supe-

rior characteristics of the developed Martian Concrete. In this study, different percentages of sulfur are

investigated to obtain the optimal mixing proportions. Three point bending, unconfined compression and

splitting tests were conducted to determine strength development, strength variability, and failure mecha-

nisms. The test results show that the strength of Martian Concrete doubles that of sulfur concrete utilizing

regular sand. It is also shown that the particle size distribution plays an important role in the mixture’s

final strength. Furthermore, since Martian soil is metal rich, sulfates and, potentially, polysulfates are also

formed during high temperature mixing, which might contribute to the high strength. The optimal mix

developed as Martian Concrete has an unconfined compressive strength of above 50 MPa. The formulated

Martian Concrete is simulated by the Lattice Discrete Particle Model (LDPM), which exhibits excellent

ability in modeling the material response under various loading conditions.

1 Introduction

Sulfur has been used as a molten bonding agent for quite a long time in human history. The use of

sulfur was mentioned in literature of ancient India, Greece, China and Egypt [7]. For example, sulfur was

one of the raw materials to manufacture gunpowder by ancient Chinese [29]; sulfur was also used to anchor

metal in stone during the 17th century [6]. Starting in the 1920s, sulfur concrete has been reported to

be utilized as a construction material [24]. Various researchers and engineers studied and succeeded in

obtaining high-strength and acid-resistant sulfur concretes [1, 2, 3]. In the late 1960s, Dale and Ludwig

pointed out the significance of well-graded aggregate in obtaining optimum strength [4, 5].
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When elemental sulfur and aggregate are hot-mixed, cast, and cooled to prepare sulfur concrete prod-

ucts, the sulfur binder, on cooling from the liquid state, first crystallizes as monoclinic sulfur (Sβ) at

238 ◦F (114 ◦C). On further cooling to below 204 ◦F (96 ◦C), Sβ starts to transform to orthorhombic sulfur

(Sα), which is the stable form of sulfur at ambient room temperatures [8]. This transformation is rapid,

generally occurring in less than 24 hours and resulting in a solid construction material. However, since

Sα is much denser than Sβ, high stress and cavities can be induced by sulfur shrinkage. Hence, durability

of unmodified sulfur concrete is a problem when exposed to humid environment or after immersion in

water. In the 1970s, researchers developed techniques to modify the sulfur by reacting it with olefinic

hydrocarbon polymers [9, 16], dicyclopentadiene (DCPD) [10, 12, 11, 15, 17], or other additives and stabi-

lizers [13, 14, 18] to improve durability of the product. Since then, commercial production and installation

of corrosion-resistant sulfur concrete has been increasing, either precast or installed directly in industrial

plants where portland cement concrete materials fail from acid and salt corrosion [24].

For earth applications, well developed sulfur concrete features (1) improved mechanical performance:

high compressive & flexural strength, high durability, acid & salt water resistant, excellent surface finish

and pigmentation, superior freeze/thaw performance; (2) cost benefits: faster setting-solid within hours

instead of weeks, increased tolerance to aggregate choice; and (3) environmentally friendly profile: reduced

CO2 footprint, no water requirements, easily obtainable sulfur as a byproduct of gasoline production,

recyclable via re-casting, compatible with ecosystem, e.g. for marine applications. Current pre-cast sulfur

concrete products include, but are not limited to, flagstones, umbrella stand, counterweights for high

voltage lines, and drainage channel [38].

For example, in January 2009, around 80 meters sewage pipeline in the United Arab Emirates was

removed and replaced by sulfur concrete. In the same time period, a total of 215 fish reef blocks made of

sulfur concrete (2.2 tons/block) were stacked at a depth of 15 meters, 6 kilometers off the coast of UAE

[35]. With regular concrete fish reefs, the growth of algae and shells takes time because concrete is alkaline.

However, since sulfur concrete is practically neutral in alkalinity, algae and shell growth was observed soon

after installation.

While sulfur concrete found its way into practice as an infrastructure material, it is also a superior

choice for space construction considering the very low water availability on the nearby planets and satellites
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[23]. After mankind stepped on the lunar surface in 1969, space agencies have been planning to go back and

build a research center on the moon. Since local material is preferred to reduce expenses, starting in the

early 1990s, NASA and collaborative researchers studied and developed lunar concrete using molten sulfur.

Around the year 1993, Omar [20] made lunar concrete by mixing lunar soil simulant with different sulfur

ratio ranging from 25% up to 70% and found the optimum mix with 35% sulfur to reach a compressive

strength of 34 MPa. Later he added 2% of steel fibers to the mixes and increased the optimum strength to

43 MPa. However, lunar concrete has serious sublimation issues because of the near-vacuum environment

on the moon. In 2008, Grugel and Toutanji [31, 33, 41] reported experimental results of two lunar concrete

mixes: (1) 35% sulfur with 65% lunar soil simulant JSC-1, and (2) 25% sulfur and 20% silica binder mixture

with 55% JSC-1. The two mixtures, similar in strength (∼ 35 MPa), revealed a continuous weight loss

due to the sublimation of sulfur when placed in a vacuum environment, 5×10−7 torr, at 20 ◦C for 60

days. Based on the measurements, it was predicted that sublimation of a 1 cm deep layer from the two

sulfur concrete mixes would take 4.4 and 6.5 years respectively. The sublimation rate varied from rapid at

the high lunar temperatures (<120 ◦C) to essentially nonexistent at the low lunar temperatures (-180 ◦C

to -220 ◦C). However, the low temperature on the moon is too harsh to maintain intact the mechanical

properties of sulfur concrete. After cycled 80 times between -191 ◦C (-312 ◦F) and 20 ◦C (68 ◦F), the

samples failed at about 7 MPa under compression, which is about 1/5 of the average strength, 35 MPa,

of the non-cycled samples.

While the moon is the closest and only satellite of earth, its near-vacuum environment, broad tem-

perature range and long day-night rhythm, about 30 earth days, are not the most adequate for human

settlement. Venus is the closest planet to Earth, however it is also the hottest planet in the solar system

with an average surface temperature over 400 ◦C [45], making it uninhabitable for humans. Mars, on the

other hand, is not too hot or too cold, and has an atmosphere to protect humans from radiation. Its

day/night rhythm is very similar to that on Earth: a Mars day is about 24 hours and 37 minutes [25].

Thus, Mars is the most habitable planet in the solar system after Earth. In recent years, many countries,

including the U.S., China, and Russia, announced to launch manned Mars missions in the next decades.

Due to the dry environment on Mars, sulfur concrete concept is a superior choice for building a human

village on the red planet. Studies of Martian meteorites suggest elevated sulfur concentrations in the inte-
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rior, and Martian surface deposits contain high levels of sulfur (SO3 up to 37 wt%, average 6 wt%), likely

in the forms of sulfide minerals and sulfate salts [37]. Except of the easiest option of finding a sulfur mine

on Mars, like the one in Sicily on Earth, elemental sulfur can be extracted from sulfides or sulfates through

various chemical and physical processes, for example, by heating up the sulfur compounds [19]. NASA

has advanced programs on In Situ Resources Utilization (ISRU) [30] for this specific purpose. Moreover,

the atmospheric pressure (0.636 kPa) [34] as well as temperature range (≤ 35 ◦C) are highly suitable for

the application of sulfur concrete. As shown in Fig. 1 [31], the most possible construction site on Mars

has environmental conditions in the Rhombic (stable) state of sulfur and is three orders of magnitude in

pressure above the solid-vapor interface. Thus, sublimation is not an issue and a relatively warm area can

be selected as the construction site. Furthermore, with the temperature on Mars lower than 35 ◦C, the

drawback of sulfur concrete melting at high temperature will not be an issue for initial constructions such

as shelters and roads while certainly might be of concern for long term settlements in which fire resistance

would be important.

To let the thoughts become facts, a new construction material using simulated Martian soil and molten

sulfur is developed in this study. Different percentages of sulfur are studied to obtain the optimal mixing

proportions. Through mechanical tests, it is found that Martian Concrete have much higher strengths than

sulfur concrete utilizing regular sand. Sieve analysis and chemical analysis provide possible explaination for

the higher strength of Martian Concrete: the Martian soil simulant has a better particle size distribution,

it is also rich in metal elements, which react with sulfur, forming polysulfates and possibly enhancing

strengths. Mechanical simulations of Martian Concrete are then carried out using the state-of-art Lattice

Discrete Particle Model with excellent simulation of Martian Concrete mechanical properties.
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Figure 1: Sulfur phase diagram with labeled environmental conditions on Mars and Moon [31]
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2 Experimental Study of Martian Concrete

Sulfur concrete products are manufactured by hot-mixing sulfur and aggregate. The sulfur binder first

crystalizes as monoclinic sulfur (Sβ), and then the mixture cools down while sulfur transforms to the stable

orthorhombic polymorph (Sα), achieving a reliable construction material. While sulfur is commercially

available, Martian soil simulant JSC Mars-1A [32] was obtained in replacement of Martian soil to develop

a feasible Martian Concrete. Table 1 lists the major element composition of the simulant. As seen, the

Martian soil simulant, resembling the actual Martian soil [22], is rich with metal element oxides, especially

aluminium oxide and ferric oxide. In this study, various percentages of sulfur are mixed with JSC Mars-1A

in a heated mixer at above 120 ◦C. Temperature measurements are performed during mixing to ensure

sulfur melting. Then the mixture is transferred to 25.4×25.4×127 mm (1×1×5 in) aluminum formwork

when it reached flowable state or best mixing conditions. Afterwards the material was let to cool down

at room temperature, about 20 ◦C. Martian soil simulant Mars-1A of maximum 5 mm aggregate size was

first used for casting, however the specimens showed many voids and uneven surfaces due to the large

aggregate, see Fig. 2a. Sulfur cannot be ensured to fill the large number of big voids or to surround

and bind all large aggregates, especially on the specimen surface. Afterwards, only Mars-1A of maximum

1 mm aggregate size was utilized to achieve Martian Concrete (MC) with flat and smooth surfaces, see

Fig. 2b. Mechanical tests were conducted after 24 hours, and these included unconfined compression,

notched and unnotched three-point-bending (TPB), and splitting (Brazilian) tests. Beams of dimensions

25.4×25.4×127 mm (1×1×5 in) are used for TPB tests, which are then cut to 25.4 mm (1 in) cubes for

compression and splitting tests.

(a) (b)

Figure 2: Martian Concrete beams utilizing Martian soil simulant with (a) maximum 5 mm aggregate,
and (b) maximum 1mm aggregate
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Table 1: Major Element Composition of Martian Regolith Simulant JSC Mars-1A [32]
Major Element Composition % by Wt.
Silicon Dioxide (SiO2) 34.5-44
Titanium Dioxide (TiO2) 3-4
Aluminum Oxide (Al2O3) 18.5-23.5
Ferric Oxide (Fe2O3) 9-12
Iron Oxide (FeO) 2.5-3.5
Magnesium Oxide (MgO) 2.5-3.5
Calcium Oxide (CaO) 5-6
Sodium Oxide (Na2O) 2-2.5
Potassium Oxide (K2O) 0.5-0.6
Manganese Oxide (MnO) 0.2-0.3
Diphosphorus Pentoxide (P2O5) 0.7-0.9

2.1 Unconfined Compression Test

Unconfined compression tests were performed in a closed loop servo-hydraulic load frame with a maximum

capacity of 489 kN (110 kips). Stroke/displacement control with a loading rate of 0.003 mm/s was applied.

In order to ensure consistent and accurate test results, a Standard Operation Procedure (SOP) for testing

was created. The test protocol was first filled with the relevant details, which include Vernier Caliper

measurements of each dimension (average of 2 ∼ 4 measurements), the initial weight, the label of the

specimen, control mode, loading rate, and start time of loading. Pictures were taken to document the

initial condition of the specimen, during test and post test states. A preload of approximately 1-5 % of

the expected peak-load was applied before the actual test commenced.

Specimens used for unconfined compression tests were 25.4 mm (1 in) cubes cut from the undamaged

parts of 25.4×25.4×127 mm (1×1×5 in) beams, see Fig. 3a. The cubes were cut out of the 62 mm (2.5 in)

long failed half’s at the center between bending test support point and fracture surface. Typical cone type

of failure is observed of Martian Concrete under unconfined compression, as shown in Fig. 3b.

The studied sulfur ratio for Martian Concrete under compression tests ranged from 35 wt% to 60

wt%. Compressive strength versus percentage of sulfur is shown in Fig. 4 (circles), revealing an optimum

percentage around 50% (± 2.5%). Furthermore, the test results indicate that recast can further increase

strength of the material. For 50% sulfur batches, recast made compressive strength go up from 48 MPa

to about 58 ∼ 63 MPa, which is roughly a 20 ∼ 30% increase, see Fig. 4 labeled as “Mars1A 1mm R.”.

Furthermore, better mixing and applying pressure while placing the material in formwork facilitates ma-
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(a) (b)

Figure 3: Cube specimen (a) before and (b) after unconfined compression test

terial strength. In the experimental campaign of this study, a well distributed pressure was manually

added to the mixture in formwork, and thus the pressure was not quantified. Making the mixture compact

facilitates formation of sulfur bonds and also reduces the number and size of cavities of the final product.

Average compressive stress-strain curves for MC with sulfur ratio ranging from 40% to 60% are plotted

in Fig. 5a. Stress is calculated as P/A, where P is load and A is the area of the cross section; strain

is calculated as ∆h/h, where h is the height of the specimen. The stress-strain curves feature a typical

almost-linear behavior up to the peak and a long stable softening post-peak.

While Martian Concrete has a high strength of over 50 MPa with relatively high percentage of sulfur,

sulfur concrete made of regular sand (Sand Concrete, SC) was cast and tested as well for comparison.

With the same dimension of 25.4 mm (1 in), SC cubes were cast with a sulfur ratio in the range of 15%

∼ 35%. Sand with a maximum aggregate size of 11 mm was first utilized. Then for comparison purposes,

maximum 1 mm sand, sieved from the coarser sand, was used as well. Following the same test procedure,

SC specimens were tested under unconfined compression loads. As shown in Fig. 4, the best percentage

of sulfur for SC was found to be about 25% for both fine (crosses in Fig. 4) and coarse (squares in Fig. 4)

mixes, having 24.5 MPa and 28.3 MPa compressive strength, respectively. The results obtained on the SC

mixes are consistent with the existing literature on standard sulfur concrete [24]. When the aggregate size

distribution of the fine sand was modified based upon the particle size distribution of Mars-1A simulant,

its SC mix’s stregnth had a 29% jump to 31.5 MPa, see Fig. 4 labeled as “Sand1A 1mm” and marked with

a diamond symbol. This indicates and confirms the significance of the particle size distribution in order

to obtain an optimum material strength.
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and AASHTO recommended PSD for mixing sulfur concrete

2.2 Particle Size Distribution Analysis

While 25% of elemental sulfur works the best for both mixes with regular sand, they also both have much

lower strength compare to Martian Concrete. To study the influence of aggregates and the corresponding

particle size distribution (PSD) on material strength, sieve analyses of Mars-1A (maximum 1 mm aggregate

size) as well as regular sand (maximum 11 mm aggregate size) were conducted. Also included in the PSD

analysis were the recommended PSDs by ASTM and AASHTO standards for mixing sulfur concrete

[24]. In Fig. 6, the normalized distributions of Mars-1A, regular sand, the ASTM D 3515 and AASHTO

recommended PSD ranges as well as Fuller’s law with power 1/2 are plotted and compared. Overall, the

PSD of Mars-1A falls well in the recommended PSD range according to standards and is relatively close

to Fuller’s law, while the PSD of regular sand misses the recommended PSD range and also deviates from

Fuller’s law. While this finding explains partly the difference in the measured strength of MC and SC, it

cannot justify the more than doubled strength of MC compared to SC.

2.3 Microscopy Study

In addition to the PSD of aggregate, other factors must play a role concerning the final strength obtained

in MC experiments. Fig. 7 & 8 show the microscope study of Martian Concrete (MC) and sulfur concrete

with regular sand (SC) with optimal compositions. By comparing the particles of MC and SC in the
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(a) (b)

Figure 7: Microscopy study of sulfur concrete on 1 mm scale with compositions of (a) 50% sulfur and 50%
Martian soil simulant (b) 25% sulfur and 75% regular sand and a maximum particle size of 1 mm

mesostructure pictures, a few observations are in order. Firstly, the visible average particle size of MC

is much smaller than that of SC after hot mixing, although both mixes use aggregate with maximum

particle size up to 1 mm. After casting and curing, the aggregate particles and their sizes can be well

distinguished for SC; on the contrary, the majority of MC particles are below 500 microns. Secondly, the

MC mix has many red areas, dark spots and almost no voids, while the SC mix shows distinguishably

yellow areas of sulfur, opaque orange to dark red spots related to sand particles and a number of voids

of around 200 microns. These observations, along with preliminary X-ray photoelectron spectroscopy

(XPS) tests, suggest that the metal elements in Mars-1A react with sulfur during hot mixing, forming

sulfates and polysulfates, and altering the PSD of aggregates to lower ends, which further enhance the

MC strength. SC does not have such phenomena because silica sand does not react with sulfur at the

aforementioned casting conditions. In other words, in MC aggregate is chemically active whereas in SC

is inert and sulfur only serves as “glue” for the sand particles. The existence of sulfates and polysulfates

in MC are qualitatively confirmed by XPS by analyzing the chemical state of sulfur and individual metal

elements within 900 micron-diameter areas of a thin MC sample. Definitely, further research is needed to

clearly identify the chemical products characterizing MC internal structure.

2.4 Three-point-bending Fracture Test

To complete the mechanical characterization of MC, its fracturing behavior is studied in this section and

the next. Beam specimens with nominal dimensions 25.4×25.4×127 mm (1×1×5 in) were cast to perform
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(a) (b)

Figure 8: Microscopy study of sulfur concrete on 400 µm scale with compositions of (a) 50% sulfur and
50% Martian soil simulant (b) 25% sulfur and 75% regular sand and a maximum particle size of 1 mm

three-point-bending (TPB) tests. The beam specimens featured a half-depth notch at midspan cut with a

diamond coated band-saw machine. Testing notched samples is customary in fracture mechanics to control

the fracture onset and to capture post-peak behavior. Dimension and weight measurements were recorded

on specifically optimized TPB protocols. Centerline on top of specimen, and support lines at the bottom

were pre-marked then aligned within the servo-hydraulic load frame, which had a capacity of 22.2 kN

(5 kip). The adopted TPB test setup is shown in Fig. 9a. The nominal span (distance between bottom

supports) was 101.6 mm (4 in). An extensometer sensor was glued to the bottom of the specimens with the

notch in between its two feet. After applying a pre-load of up to 5% of the expected peak, the specimens

were loaded in crack mouth opening displacement (CMOD) control with a loading rate of 0.0001 mm/sec,

which was increased in the post-peak section to limit the total testing time while ensuring a fully recorded

softening behavior. Typical crack propagation and fracture surface after failure are presented in Fig. 9b&c.

The crack starts at the notch tip and develops upward along the ligament.

Notched (50%) fracture test stress-strain curves of MC with sulfur ratio in the range of 40% ∼ 60%

are plotted in Fig. 5b. The nominal tensile flexural stress is calculated as σ = 3PL/2bh2, where P is load,

and L, b, and h are span, width, and depth of the specimen respectively; the nominal strain is calculated

as ε=CMOD/h. The optimal percentage of sulfur is found to be 50% (± 2.5%) which gives a nominal

flexural strength of approximately 1.65 MPa, and it agrees with the optimal percentage determined from

unconfined compression tests. The highest nominal flexural strength obtained is 2.3 MPa reached by one

of the two recast 50% sulfur batches, as shown in Fig. 10a. It must be observed that nominal flexural
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(a) (b)

(c)

Figure 9: (a) Three point bending (TPB) test setup, (b) fracture surface and (c) typical crack propagation
after bending test of Martian Concrete

strength and flexural nominal stress-strain curves are not material properties, due to the presence of the

notch, and they are calculated here only for comparison purposes. The typical material property that

can be calculated from TPB test is the fracture energy, defined as the energy per unit area needed to

create a unit stress-free fracture area. By adopting the work-of-fracture method [21] the fracture energy is

computed by dividing the area under the load vs. stroke curve by the ligament area. The highest average

total fracture energy is as well reached by the recast Martian Concrete with 50% sulfur with a value of

67 J/m2, as shown in Fig. 10b. When mixed with lower or higher sulfur ratio than 50%, MC has lower

fracture energies, see Fig. 5b and Fig. 10b. Same as for compressive strength, recast and applying pressure

can as well improve material flexural strength thanks to more compact sulfur bonds.

2.5 Splitting and Modulus of Rupture Tests

Splitting tests on 25.4 mm (1 in) cubes were performed by the same load frame as for compression.

Roughly 1 mm diameter bars were placed on the top and at the bottom of the specimen. A loading rate

of 0.003 mm/s was applied until failure of the specimen at peak load. Only recast Martian Concrete with

47.5%, 50%, and 52.5% were tested, and provided splitting tensile strength of 3.6 MPa ± 30%, 3.9 MPa
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Figure 10: Best percentage of sulfur for Martian Concrete by TPB test results (a) nominal flexural strength,
and (b) fracture energy

± 28%, and 2.72 MPa ± 26% respectively. The splitting tensile strength is calculated as σ = 2P/πbh,

where P is load, b and h are the depth and height of the cube specimen respectively. In agreement with

compression and TPB test results, splitting tests again confirm that MC with 50% of sulfur have the

highest performance. The splitting nominal stress-strain curves, until failure at peak load, of the optimum

MC are shown in Fig. 16b, where nominal strain is calculated as vertical displacement divided by the

specimen height.

Modulus of rupture (MOR) tests were carried out for MC with the optimum mix, 50% sulfur and 50%

Martian soil simulant. Unnotched beams with dimensions 25.4×25.4×127 mm (1×1×5 in) were tested for

MOR using the aforementioned machine and setup for notched TPB but by stroke control with loading

rate 0.001 mm/s. The developed MC has an average MOR value of 7.24 MPa, see Fig. 16a. The nominal

MOR stress is calculated as σ = 3PL/2bh2, where P is load, L, b, and h are span, width, and depth of the

specimen respectively; the nominal strain is calculated as vertical displacement divide by specimen depth.

3 Lattice discrete Particle Model Simulations

For design and analysis purposes it is important to formulate and validate a computational model for the

simulation of Martian Concrete. This is pursued within the theoretical framework of the Lattice Discrete

Particle Model (LDPM).

In 2011, building on previous work [26, 27, 28], Cusatis and coworkers [39, 40] developed LDPM, a

mesoscale discrete model that simulates the mechanical interaction of coarse aggregate pieces embedded
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in a binding matrix. The geometrical representation of concrete mesostructure is constructed by randomly

introducing and distributing spherical shaped coarse aggregate pieces inside the volume of interest and

zero-radius aggregate pieces on the surface. Based on the Delaunay tetrahedralization of the generated

particle centers, a three-dimensional domain tessellation creates a system of polyhedral cells (see Fig. 11)

interacting through triangular facets and a lattice system. The full description of LDPM geometry is

reported in Cusatis. et. al. [39, 40].

Figure 11: One LDPM Cell around an aggregate piece.

In LDPM, rigid body kinematics is used to describe the deformation of the lattice particle system and

the displacement jump, JuCK, at the centroid of each facet is used to define measures of strain as

eN =
nTJuCK

`
; eL =

lTJuCK
`

; eM =
mTJuCK

`
(1)

where ` = interparticle distance; and n, l, and m, are unit vectors defining a local system of reference

attached to each facet. A vectorial constitutive law governing the material behavior is imposed at the

centroid of each facet. In the elastic regime, the normal and shear stresses are proportional to the corre-

sponding strains: tN = ENe
∗
N = EN(eN − e0N); tM = ET e

∗
M = ET (eM − e0M); tL = ET e

∗
L = ET (eL − e0L),

where EN = E0, ET = αE0, E0 = effective normal modulus, and α = shear-normal coupling parameter;

and e0N , e0M , e0L are mesoscale eigenstrains (if any present). For stresses and strains beyond the elastic limit,

the LDPM formulation considers the following nonlinear mesoscale phenomena [26, 27, 39]: (1) fracture

and cohesion; (2) compaction and pore collapse; and (3) internal friction.

Fracture and cohesion due to tension and tension-shear. For tensile loading (e∗N > 0),

the fracturing behavior is formulated through effective strain, e∗ =
√
e∗2N + α(e∗2M + e∗2L ), and stress,

t =
√
t2N + (t2M + t2L)/α, which define the normal and shear stresses as tN = e∗N(t/e∗); tM = αe∗M(t/e∗);

tL = αe∗L(t/e∗). The effective stress t is incrementally elastic (ṫ = E0ė) and must satisfy the inequal-
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ity 0 ≤ t ≤ σbt(e, ω) where σbt = σ0(ω) exp [−H0(ω)〈e− e0(ω)〉/σ0(ω)], 〈x〉 = max{x, 0}, and tan(ω) =

e∗N/
√
αe∗T = tN

√
α/tT , and e∗T =

√
e∗2M + e∗2L . The post peak softening modulus is defined as H0(ω) =

Ht(2ω/π)nt , where Ht is the softening modulus in pure tension (ω = π/2). LDPM provides a smooth

transition between pure tension and pure shear (ω = 0) with parabolic variation for strength given by

σ0(ω) = σtr
2
st

(
− sin(ω) +

√
sin2(ω) + 4α cos2(ω)/r2st

)
/[2α cos2(ω)], where rst = σs/σt is the ratio of shear

strength to tensile strength.

Compaction and pore collapse from compression. Normal stresses for compressive loading

(e∗N < 0) must satisfy the inequality −σbc(eD, eV ) ≤ tN ≤ 0, where σbc is a strain-dependent boundary

depending on the volumetric strain, eV , and the deviatoric strain, eD = eN − eV . The volumetric strain is

computed by the volume variation of the Delaunay tetrahedra as eV = ∆V/3V0 and is assumed to be the

same for all facets belonging to a given tetrahedron. Beyond the elastic limit, −σbc models pore collapse

as a linear evolution of stress for increasing volumetric strain with stiffness Hc for −eV ≤ ec1 = κc0ec0:

σbc = σc0 + 〈−eV − ec0〉Hc(rDV ); Hc(rDV ) = Hc0/(1 + κc2 〈rDV − κc1〉); σc0 is the mesoscale compressive

yield stress; rDV = eD/eV and κc1, κc2 are material parameters. Compaction and rehardening occur beyond

pore collapse (−eV ≥ ec1). In this case one has σbc = σc1(rDV ) exp [(−eV − ec1)Hc(rDV )/σc1(rDV )] and

σc1(rDV ) = σc0 + (ec1 − ec0)Hc(rDV ).

Friction due to compression-shear. For compression dominated loading conditions (e∗N < 0), the

incremental shear stresses are computed as ṫM = ET (ė∗M−ė
∗p
M) and ṫL = ET (ė∗L − ė

∗p
L ), where ė∗pM = ξ̇∂ϕ/∂tM ,

ė∗pL = ξ̇∂ϕ/∂tL, and ξ is the plastic multiplier with loading-unloading conditions ϕξ̇ ≤ 0 and ξ̇ ≥ 0. The

plastic potential is defined as ϕ =
√
t2M + t2L − σbs(tN), where the nonlinear frictional law for the shear

strength is assumed to be σbs = σs+(µ0−µ∞)σN0[1−exp(tN/σN0)]−µ∞tN ; σN0 is the transitional normal

stress; µ0 and µ∞ are the initial and final internal friction coefficients.

Each meso-level parameter in LDPM governs part of the mechanical material behavior. The normal

elastic modulus, which refers to the stiffness for the normal facet behavior, E0, , along with the coupling

parameter α, govern LDPM response in the elastic regime. Approximately, the macro scale Young’s

modulus E and Poisson’s ratios ν can be calculated as E = E0(2 + 3α)/(4 + α) and ν = (1− α)/(4 + α).

Typical concrete Poisson’s ratio of about 0.18 is obtained by setting α = 0.25 [40]. The tensile strength, σt,

and characteristic length, `t, govern the strain softening behavior due to fracture in tension of LDPM facets
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[40], with the relation Gt = `tσ
2
t /2E0, where Gt is the mesoscale fracture energy. Calibration of σt and `t

is typically achieved by fitting experimental data, e.g. the nominal stress-strain curves of TPB tests. The

yielding compressive stress, σc0, defines the behavior of the facet normal component under compression.

The softenig exponent, nt, governs the interaction between shear and tensile behavior during softening

at the facet level and it governs the macroscopic compressive behavior at high confinement. One obtains

more ductile behavior in both compression and tension by increasing nt, however the increase is more

pronounced in compression than in tension. The initial internal friction, µ0, mainly govern the mechanical

response in compression at low confinement and have no influence on tensile behavior. Descriptions of

effects and functions of other LDPM mesoscale parameters and further discussions can be found in Cusatis

et. al. [40] and Wan et. al. [48].

LDPM has been utilized successfully to simulate cementitious concrete behavior under various loading

conditions [39, 40]. Furthermore, the framework has been extended to properly account for fiber reinforce-

ment [42, 43] and has the ability to simulate the mechanical behavior of ultra high performance concrete

(UHPC) [44, 46, 48] and long term behavior of concrete with fastening applications [47].

Although Martian Concrete has sulfur bonds instead of calcium-silicate-hydrate gels, it shares with

cementitious concrete the heterogeneous internal structure, which is the basis of the LDPM formulation.

Thus, LDPM is adopted to simulate the mechanical behavior of the Martian Concrete. The numerical sim-

ulations presented in this paper were performed with the software MARS, a multi-purpose computational

code, which implements LDPM, for the explicit dynamic simulation of structural performance [36]. As

aforementioned, the particle size of aggregate in MC is shifted to lower ends after casting, however, the ex-

act distribution cannot be obtained and simulating the smallest particles would result in significantly high

computation cost. Thus, the discrete particles are generated randomly with aggregate piece of 0.5 to 1 mm

and Fuller’s law to the power 1/2 for each type of specimen. The utilized mesoscale parameters for MC

with the best sulfur ratio (50%) are listed in Table 2. The TPB experimental data was primarily utilized

to calibrate the LDPM parameters governing elastic as well as fracture behavior, which include normal

modulus, tensile strength, shear strength ratio, tensile characteristic length, and softening exponent. Note

that the normal modulus is calibrated by the TPB test data because the nominal strain (CMOD/h) is

directly measured on the specimen, while all other tests include the effect of the test machine compliance.
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Compression experimental data was then used to calibrate the shear strength, the softening exponent and

the initial internal friction. The other parameters’ values, relevant to confined compressive behavior, are

determined based on calibrated sets for typical concrete materials available in the literature [40, 48] and

are assumed to work also for Martian Concrete in absence of specific experimental data. The adopted

values are densification ratio = 1, asymptotic friction = 0, transitional stress = 300 MPa, volumetric devi-

atoric coupling coefficient = 0, deviatoric strain threshold ratio = 1, and deviatoric damage parameter =

5. After all LDPM parameters had been calibrated and determined, prediction simulations for unnotched

TPB tests and splitting tests were carried out and compared to experimental data as validation.

The LDPM simulation setup, typical failure type and crack propagation of notched TPB, unconfined

compression, splitting, and unnotched TPB tests are shown in Fig, 12, 13, & 14 respectively. Note

that in the notched and unnotched TPB simulation setup (Fig. 12 & 14), the specimen is composed of

lattice discrete particles at the center and classical elastic finite elements on the two sides, where only

elastic deformation is expected to occur, to save computational time. In the unconfined compression test

simulation, high friction parameters for typical concrete-steel slippage interaction [40] are utilized: µs =

0.13, µd = 0.015, and s0 = 1.3 mm, to simulate friction between the specimen ends and the steel loading

platens, assuming a slippage-dependent friction coefficient formulated as µ(s) = µd + (µs−µd)s0/(s0 + s).

The fitted stress-strain curves can be found in Fig. 15 & 16. Fig. 15a shows the nominal stress-strain curves

for 50% notched TPB tests and the material has total fracture energy, GF , of 67.0 J/m2. The mesoscale

initial fracture energy calculated from LDPM parameters, Gt = `tσ
2
t /2E0 = 37.6 J/m2, is approximately

half of GF . This is due to the fact that even under macroscopic mode I fracture the mesoscale response is

characterized by both shear and tension. Fig. 15b presents the experimental and simulated stress-strain

curves of unconfined compression test. Young’s modulus E is back calculated as the aforementioned

equation E = E0(2 + 3α)/(4 +α) and has an average value of 6.5 GPa. This value is then used to remove

the machine compliance in experimental compression test data.

Brittle failure is observed both in experiments and simulations for unnotched TPB and splitting tests,

as shown in Fig. 16 a & b respectively. The compliance in splitting and unnotched TPB experimental data

is removed according to calibrated simulations. As pure predictions, the simulation peaks highly agree

with the average strengths of the experiments. This indicates the superior ability of LDPM to simulate and

19



Figure 12: LDPM simulation notched TPB test setup and zoomed-in view of crack propagation

(a) (b)

Figure 13: LDPM simulation typical crack propagation in (a) unconfined compression test and (b) splitting
(Brazilian) test

Figure 14: LDPM simulation unnotched TPB test setup and typical crack propagation

19

Figure 12: LDPM simulation of notched TPB test setup and zoomed-in view of crack propagation

predict the mechanical behavior of not only cement based concrete but also the novel waterless Martian

concrete materials.

Table 2: Parameters for Martian Concrete LDPM Simulations
NormalModulus [GPa] 10
DensificationRatio [-] 1
TensileStrength [-] [MPa] 3.7
YieldingCompressiveStress [MPa] 300
ShearStrengthRatio [-] 4
TensileCharacteristicLength [mm] 55
SofteningExponent [-] 0.2
InitialHardeningModulusRatio [-] 0.12
TransitionalStrainRatio [-] 4
InitialFriction [-] 0.1
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(a) (b)

Figure 13: LDPM simulation of typical crack propagation in (a) unconfined compression test and (b)
splitting (Brazilian) test

Figure 14: LDPM simulation of unnotched TPB test setup and typical crack propagation
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Figure 15: Experimental results and LDPM simulations for calibration and validation: (a) 50% notched
three-point-bending tests (b) unconfined compression tests
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Figure 16: Experimental results and LDPM simulations for validation: (a) unnotched three-point-bending
tests (b) splitting tests

4 Summary and Conclusions

In conclusion, the developed sulfur based Martian Concrete is feasible for construction on Mars for its easy

handling, fast curing, high strength, recyclability, and adaptability in dry and cold environments. Sulfur

is abundant on Martian surface and Martian regolith simulant is found to have well graded particle size

distribution to ensure high strength mix. Both the atmospheric pressure and temperature range on Mars

are adequate for hosting sulfur concrete structures. Based upon the experimental and numerical results

presented in this paper, the following conclusions can be drawn:

• The best mix for producing Martian Concrete (MC) is 50% sulfur and 50% Martian soil simulant

with maximum aggregate size of 1 mm. The developed MC can reach compressive strength higher

than 50 MPa.

• The optimum particle size distribution (PSD) of Martian regolith simulant is found to play a role in

achieving high strength MC compared to sulfur concrete with regular sand.

• The rich metal elements in Martian soil simulant are found to be reactive with sulfur during hot

mixing, possibly forming sulfates and polysulfates, which further increases MC strength. Simultane-

ously, the particle size distribution of aggregate is shifted to lower ends, resulting in less voids and

higher performance of the final mix.

• With the advantage of recyclability, recast of MC can further increase the material’s overall perfor-
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mance.

• Applying pressure during casting can also increase the final strength of MC. Sulfur shrinks when is

cooled down. By reducing the mixture’s volume during casting, the number and size of cavities of

the final product are decreased.

• Although developed for conventional cementitious concrete, the Lattice Discrete Particle Model

(LDPM) shows also excellent ability in simulating the mechanical behavior of MC under various

loading conditions.
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