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Abstract:

This paper presents an investigation of the age dependent size effect and fracture characteristics of an

ultra high performance concrete (UHPC). Experiments and simulations are conducted according to the age

dependent and discrete element based theoretical framework, HTC-LDPM, developed in the authors’ previous

work [1]. The aging framework is formulated by coupling a hygro-thermo-chemical (HTC) theory with the Lattice

Discrete Particle Model (LDPM). The HTC component allows taking into account variable curing conditions

and predicting the maturity of concrete, while the mechanical component, LDPM, permits the simulation of

the failure behavior of concrete at the length scale of major heterogeneities. By well calibrated and validated

HTC model and LDPM bridged by aging functions, size effect simulations and predictions of various early ages

and sizes are carried out, in furtherance of an experimental campaign, for the UHPC. The ultimate three-

point-bending flexural strengths from experiments and simulations are analyzed by cohesive size effect curve

(CSEC) method and classical size effect law (SEL). The CSEC method fits slightly better than SEL, while both

with correlation R2 values higher than 0.99. Based on experiments, simulations, size effect analysis, and the

formulated aging functions, it is concluded that the fracture energy can have a non-monotonic relation in terms

of concrete aging. Furthermore, it is found that the magnitude of size effect increases with concrete aging. In

other words, mature concrete exhibit higher size effect than young concrete. With great accuracy and prediction

significance in simulating mechanical behavior, the HTC-LDPM framework can be applied to a broad range of

cement based concrete materials for aging and size effect studies.

1 Introduction

Ultra high performance concretes (UHPCs) are cementitious composites characterized by high compressive

strength, low water-binder ratio, optimized gradation curve, inclusion of thermal activation, fiber reinforcement

and superplasticizers. UHPC became commercially available in the beginning of the 21st century and has been

utilized in the construction industry, especially for bridge applications and tall buildings, around the world across

North America, Europe, and Asia. While more and more UHPCs are developed and utilized in the construction

industry, what is lacking in the available literature is a model for the evolution of fracture characteristics and

size effect of UHPCs at early age. This is crucial in terms of structural design, project planning, and building
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optimization. Based upon the formulated early age mode in the authors’ previous work [1], this paper presents

a comprehensive size effect study and analyzes the age dependent fracture characteristics for a UHPC.

It is well known that the strength of cementitious concrete increases rapidly at early age. However, the chem-

ical and physical mechanisms behind this phenomenon are complex and consist of multiple coupled components.

The cross-effects between hydration reaction, temperature and humidity evolution, and member deformation

involve complex chemo-physical mechanisms that operate over a broad range of length and time scales. Notably,

evolution laws for maturing concrete based on Arrhenius-type time acceleration concepts are widely supported

by a good agreement with experimental data [42, 43, 36].

Ulm and Coussy [36] studied the thermo-chemo-mechanical coupling of concrete at early age with a for-

mulation based upon thermodynamics of open porous media composed of a skeleton and several fluid phases

saturating the porous space. It accounts explicitly for the hydration of cement by considering the thermo-

dynamic imbalance between the chemical constituents in the constitutive model at the macrolevel, however

neglecting the effects from stress and temperature evolutions. Afterwards they extended the thermo-chemo-

mechanical cross effects characterizing the autogeneous shrinkage, hydration heat and strength growth, within

the framework of chemoplasticity [32]. Cervera et. al. [28] applied the reactive porous media theory and

introduced a novel aging model which accounts for the effect of curing temperature evolution featuring the

aging degree as an internal variable. They suggested that the evolution of the compressive and tensile strengths

and elastic moduli can be predicted in terms of the aging degree [26, 27]. The model considers the short-term

mechanical behavior based on the continuum damage mechanics theory and the long-term mechanical behavior

based upon the microprestress-solidification theory [29]. Bernard, Ulm and Lemarchand [25] developed a multi

scale micromechanics-hydration model to predict the aging elasticity of cement-based materials starting at the

nano level of the C-S-H matrix. Lackner and Mang [23] proposed a 3-D material model for the simulation

of early-age cracking of concrete based on the Rankine criterion formulated in the framework of multi surface

chemoplasticity. Gawin, Pesavento, and Schrefler [20, 21] proposed a solidification-type early-age model and

extended it to account for coupled hygro-thermo-chemo-mechanical phenomena, which was already applied to

practical problems [8, 7].

Di Luzio and Cusatis [15, 16] formulated, calibrated, and validated a hygro-thermo-chemical (HTC) model

suitable for the analysis of moisture transport and heat transfer for standard as well as high performance concrete.
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In this study, classical macroscopic mass and energy conservation laws were formulated in terms of humidity

and temperature as primary variables and by taking into account explicitly various chemical reactions including

cement hydration, silica fume reaction, and silicate polymerization [15]. Furthermore, Di Luzio and Cusatis [9],

amalgamated the microplane model and the microprestress-solidification theory. This unified model takes into

account all the most significant aspects of concrete behavior, such as creep, shrinkage, thermal deformation,

and cracking starting from the initial stages of curing up to several years of age.

While continuum mechanics and finite element solvers are broadly utilized for mechanical analysis of concrete

structures at the macroscopic levels, the Lattice Discrete Particle Model (LDPM) [10, 11] provides additional

insights into failure behavior of concrete at smaller length scales. LDPM simulates concrete at the length scale

of coarse aggregate pieces (mesoscale) and is formulated within the framework of discrete models, which enable

capturing the salient aspects of material heterogeneity while keeping the computational cost manageable [10].

The HTC model and LDPM are selected as basis for the early age mechanical model formulated in the

authors’ previous work [1]. By coupling the hygro-thermo-chemical (HTC) model and the Lattice Discrete

Particle Model (LDPM) bridged by aging functions, the proposed computational framework can accurately

simulate the development of the internal structure of C-S-H reactions and corresponding effects on mechanical

properties. The developed aging functions for the investigated UHPC connecting the HTC model and LDPM

have a quite simple form but capture fully the evolution of material properties as functions of aging degree. The

details of the computational framework can be found in Wan et. al [1] and are summarized in Appendix B.

In furtherance of aging, size effect of quasi brittle infrastructure materials, e.g. concrete, is crucial in struc-

tural design and construction. In many situations, e.g. shear design of beams, laboratory scale mechanical tests

can not represent the structural level performance without taking into consideration the size effect. Furthermore,

the fracture properties evolution of concrete during aging play a significant role in design and construction plan-

ning. In the literature, a limited number of studies of the age-dependent fracture characteristics are available

[31, 24, 22], however a computational framework capable of comprehensively capturing and predicting the age

dependent fracture characteristics is still missing. Moreover, although size effect has long been widely known in

the civil engineering community, its age dependence has not been studied in the available literature. Thus, the

developed HTC-LDPM framework is applied to assess its ability in describing the age dependence of size effect

and fracture characteristics.
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Size effect studies are carried out by experiments, simulations, predictions and fracture analysis. Fully cured

UHPC beams with scaled geometries were utilized in three-point-bending tests. Data of beams of one size but

on various ages are available from previous studies [1]. Within the computational framework of HTC-LDPM,

validations and predictions are carried out for various early ages and scaled specimen sizes. The nominal flexural

strengths obtained from experiments and predictive simulations are then analyzed by various methods including

the SEL (size effect law) and CSEC (cohesive size effect curves) method. The tensile strength and tensile

characteristic length can be directly obtained through data fitting by SEL and CSEC. Afterwards the initial and

total fracture energy is computed and further analyzed in terms of aging. The stress field orthogonal to the

crack and associated dissipated energy for various sizes and ages are as well computed and presented. Lastly,

the magnitude of size effect is evaluated in terms of concrete aging.

2 Literature Review on Size Effect

The mechanical size effect of quasi-brittle materials, e.g. concrete, rock, ceramics, etc., has been broadly

described in the literature as the dependence of the structural strength on the structural size. More specifically,

the structural strength, a normalized measure of the load-carrying capacity of the structure, decreases as the

structural size increases. In the case of beam specimens under three-point-bending (TPB) tests, the structural

flexural nominal stress σN can be defined as:

σN =
3PS

2BD2
(1)

where P = load, S = specimen span, B = specimen thickness, and D = specimen depth [30].

Based on the cohesive crack model, with a linear softening law, the size effect for mode I fracture can be

described by the following equation [33, 18]:

(
f ′t
σNu

)2

= Φ

(
D

`ch

)
(2)

where f ′t = tensile strength, σNu = nominal strength associated with the peak load Pu, D = size of structural

member, and `ch is Hillerborg’s characteristic length: `ch = EGF/f
′2
t , E = Young’s modulus, and GF = total

fracture energy (energy required to create a unit area of stress-free crack). The approximation of Φ can be
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obtained by carrying out numerical simulations of cohesive crack propagation in geometrically similar structures.

Following Cusatis and Schauffert [13], size effect relationships represented symbolically by Eq. 2, and all other

similar relationships involving normalized ultimate nominal stress as a function of normalized structural size, will

be termed cohesive size effect curves and abbreviated “CSEC”.

On the other hand, with no reference to the cohesive crack model [13], the size effect law (SEL), first

formulated by Bažant in 1984 [41], can be derived on the basis of equivalent linear elastic fracture mechan-

ics (LEFM). The LEFM crack initiation condition is written with reference to an “effective crack length”as

G(α0 + cF/D) = σ2
NuDg(α0 + cF/D)/E = GF , where G(α) = energy release rate, α0 = a0/D is the initial

dimensionless notch depth, a0 = initial notch depth, g(α) = dimensionless energy release rate, and cF = effec-

tive fracture process zone length, assumed to be a material property [30, 13]. By approximating g(α0 + cF/D)

with its Taylor series expansion at α0 and retaining only up to the linear term of the expansion, the classical

form of Bažant’s SEL can be obtained:

σNu =

√
EGF

g′0cF + g0D
(3)

where g0 is the dimensionless energy release rate and g′0 is its derivative for α = α0. By introducing Hillerborg’s

characteristic length, `ch, Bažant’s SEL, can be recast into the following form:

(
f ′t
σNu

)2

= g0
D

`ch
+ g′0

cF
`ch

(4)

As already proven by previous analytical and numerical studies [13, 40, 38], the SEL is equivalent to the

asymptotic behavior of the CSEC, namely the CSEC tends asymptotically to a straight line for large sizes that

corresponds to the SEL. For a nonlinear softening law and for realistic structural sizes, it can be shown that Eq.

2∼4 still apply, if one considers the initial fracture energy Gf characterizing the initial part of the softening law

(see Fig. 9d) and the associated characteristic length `1 = EGf/f
′2
t .

To facilitate the identification of Gf and `1 through the CSEC, an approximated analytical CSEC formula

for TPB geometries was developed to match both the small-size (plastic limit) and large-size (asymptotic)

behaviors [13]. This approximately has the following form:

f
′2
t

g′0σ
2
Nu

=
g0D

g′0`1
+

(
1 + 11

√
g0D

g′0`1

)(
β0 + 25

√
g0D

g′0`1

)−1
(5)
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where β0 = 9(1− α0)
4g′0. The associated SEL [13] is:

f
′2
t

g′0σ
2
Nu

=
g0D

g′0`1
+ 0.44 (6)

3 UHPC Size Effect Study

3.1 Experiments

Mix-design and curing protocol for the UHPC material utilized in this size effect study was described in Wan.

et. al. [1] and is summarized in Appendix A. Three sets of beams were cast with a geometrical scaling factor of
√

5 for depth & span and constant thickness of 25.4 mm ( 1 in). Their nominal dimensions are as follows: size

M, 25.4×25.4×127 mm (1×1×5 in); size L, 56.8×25.4×254 mm (
√

5×1×10 in); size XL, 127×25.4×558.8

mm (5×1×22 in). The depth to span ratio was kept as 1:4. On 120 days of average age, the specimens

were machined to have 50% notch depth, and were tested in a TPB configuration in crack-mouth-opening-

displacement (CMOD) control as shown in Fig. 1a. The actual dimensions measured on the day of testing are

utilized for post-test calculations and are listed in Table 1. The testing results are shown in Fig. 1b, in which

the nominal flexural stress is computed based on Eq. 1, the nominal strain is calculated by εN = CMOD/D,

and the total fracture energy GF , according to the work of fracture, is computed as the area under the force-

displacement curve divided by the ligament area. As one can see, the nominal strength reduces significantly

with size and the total fracture energy is approximately constant with an average value of Gexp
F =63.3 J/m2.

Table 1: Actual specimen dimensions for size effect tests
Size Length L [mm] Thickness B [mm] Depth D [mm] Test Span S [mm] No. of Specimens
M 128.0±0.2% 26.3±1.9% 26.2±1.1% 101.6 8
L 254.1±0.4% 26.5±4.6% 58.0±0.7% 227.2 4
XL 558.2±0.0% 26.5±4.3% 127.3±0.9% 508 3

3.2 LDPM Simulations

The size-effect experiments were simulated through an age-dependent mesoscale computational framework

[1, 2], derived by coupling the hygro-thermo-chemical (HTC) model [15, 16, 9] and the Lattice Discrete Particle

Model (LDPM) [10, 11]. The details of the computational framework can be found in Wan et. al [1] and are

summarized in Appendix B. The LDPM parameters computed through the aging functions for the nominally 120
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Figure 1: UHPC size effect experimental (a) test setup and (b) testing results: nominal stress-strain curves
of three point bending tests

days old UHPC specimens are listed in Table 2 where the LDPM parameters governing the tensile fracturing

behavior are underlined. It must be observed here that the parameters reported in Table 2 where identified

on the basis of the TPB tests of medium size along with data on unconfined compression behavior [1, 6, 4].

Consequently, the simulations of large (L) and extra-large (XL) specimens must be regarded as pure predictions.

Simulation setup as well as crack patterns are as shown in Fig. 2. In order to save computational cost, the

middle section of the specimen of length equal to the specimen depth is simulated through the mesoscale model

whereas the rest of the specimen is simulated with elastic finite elements. Continuity at the interfaces was

enforced by means of a master-slave algorithm.

The LDPM simulation results as well as crack patterns for each size can be found in Fig. 3. At least three

specimens with different particle placement were utilized for each size to show the scatter due to random particle

placement. The simulations have slightly higher stress values compared to the experimental data. This is most

likely due to shrinkage cracking of the specimens tested experimentally, which is not considered in the current

numerical analysis. The fracture energy from simulations are calculated as the area under the force-displacement

curve divided by the nominal ligament area. Note the Gsim
F values in Fig. 3 are computed after truncating the

simulated force-displacement curves with equivalent crack mouth opening as in the experiments. Gsim
F has an

average value of 68.3 J/m2, which is about 7.9% higher than that of the experiments, Gexp
F =63.3 J/m2. When

the full force-displacement curve is considered, Gsim
F has a value of about 100.6 J/m2. Overall, the simulations
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can represent the UHPC behavior under TPB test with very high accuracy and capture the experimentally

observed size effect for fully cured specimens. The crack patterns from simulations also coincide with those of

the TPB experiments. In an earlier study the capability of the framework to well reproduce the age dependent

response was shown [1]. Thus, it can be assumed that the model can also predict well the age dependence of

size effect.

Figure 2: UHPC size effect LDPM simulation setup (top to bottom: M, L, XL)

Table 2: Size Effect - LDPM Parameters
Days 120 (HR+WB)

Ave. Aging Degee 0.9546
±Standard Deviation [%] ±0.010

Normal Modulus E0 [MPa] 71595
Densification Ratio Ed/E0 [-] 2.5
Alpha [-] 0.25
Tensile Strength σt [-] [MPa] 11.9
Compressive Yielding Stress [MPa] 449
Shear Strength Ratio [-] 5.5
Tensile Characteristic Length `t [mm] 21
Fracture Energy Gt [J/m2]∗ 21.13
Softening Exponent [-] 0.28
Initial Hardening Modulus Ratio [-] 0.36
Transitional Strain Ratio [-] 4
Inital Friction [-] 0.0335
Asymptotic Friction [-] 0
Transitional Stress [MPa] 269
Volumetric Deviatoric Coupling [-] 0
Deviatoric Strain Threshold Ratio [-] 1
Deviatoric Damage Parameter [-] 5
∗ Calculated as Gt = `tσ

2
t /2E0
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3.3 Size Effect Analysis

In this section CSEC & SEL (Eq. 5&6) are fitted to the experimental and numerical nominal strengths in order

to identify macroscopic fracture properties (f ′t , `1, Gf ) and assess the reliability of such identification procedure.

For a single-edge cracked beam subjected to three-point bending, the expression for fracture analysis depends

mildly on the shear force magnitude near the central cross-section, i.e., on the span-to-depth ratio [30]. For

the case S/D=4 as in this study, the dimensionless energy release rate can be calculated, according to Pastor

et al. [37, 14], as g(α) = k(α)2, k(α) =
√
αp(α)/((1 + 2 ∗ α)(1 − α)1.5), and p(α) = 1.900 − α[−0.089 +

0.603(1− α)− 0.441(1− α)2 + 1.223(1− α)3].

For 50% notched beams, α0 = 0.5, and one has g0 = 3.1415, g′0 = 19.858. The fitted CSEC & SEL

curves for experimental and simulated ultimate strengths are presented in Fig. 4a&b respectively. The axes

X = g0D/g
′
0`1 and Y = f

′2
t /g

′
0σ

2
Nu are taken as in Eq. 5&6. The two parameters: tensile strength, f ′t , and

tensile characteristic length, `1, are obtained through the CSEC & SEL data fitting. The initial fracture energy

is calculated as Gf = `1f
′2
t /E using the correspondingly fitted values (f ′t , `1) of CSEC & SEL. Note, in the

figure the SEL lines are normalized based on CSEC fits for comparison reasons. Both CSEC and SEL fit the size

effect data very well with correlation coefficients higher than 0.99, whereas CSEC fits slightly better than SEL.

The CSEC fitted tensile strength is on average 20% lower than the SEL fitted value; The CSEC fitted tensile

characteristic length is about 40% higher than that of SEL; The calculated initial fracture energy for CSEC is

roughly 4.8% higher than that for SEL. When compared to the LDPM parameters σt & f ′t (see Table 2), the

CSEC fitted f ′t & `1 (see Fig. 4b) are 10.9% lower and 17.6% lower respectively, and the SEL fitted values are

16.0% higher and 54.3% lower respectively. Overall, the CSEC provides closer values than SEL when compared

to the LDPM parameters; The SEL tends to overestimate the tensile strength and largely underestimate the

tensile characteristic length; The asymptotic behavior of CSEC and SEL tend to coincide with each other. In

conclusion, both CSEC and SEL can provide highly accurate fits, however the CSEC is more reliable than SEL

in terms of providing fracture related parameter values from data fitting, especially for smaller sizes that start

deviating from the asymptotic shape.
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3.4 Sensitivity Study of CSEC

As shown in Fig. 3, the simulations are fairly close to the experimental data, well representing the actual crack

propagation. The average nominal strength from simulations for size M, L and XL are 3.1%, 9.5% and 8.8%

higher than those of the experiments respectively. This section focuses on the discussion of the differences of

the CSEC analysis for the experimental and simulated results.

As shown in Fig. 4, the simulated ultimate strengths are fitted by CSEC with R2 value of 99.99%; Similarly,

the experimental data points are matched with R2 = 99.48%, indicating the excellent capability of CSEC in

describing the size effect of concrete. However, the CSEC fitted parameters (f ′t , `1, Gf ) for the experimental

results differ moderately from those for the simulated set of data. CSEC fitted f ′t for experiment is 15%

higher than that for simulation. CSEC fitted `1 for experiment is 42% lower than that for simulation. The

correspondingly calculated Gf for experiment is about 24% than that for simulation.

To study the sensitivity of the CSEC method, 10,000 possible realizations for the ultimate flexural tensile

strength, σNu, were created. The Monte Carlo method with normal distribution was utilized for sampling both

experimental and simulated data sets of σNu, while keeping their actual average and standard deviation values.

The actual average dimension, D, the depth of the specimens of each size was utilized since its scatter is

negligible with standard deviation lower than roughly 1% from experiments. The nominal dimensions were

utilized for simulations. Afterwards the CSEC analysis was conducted for each generated sample set, yielding

corresponding realizations of tensile strength and tensile characteristic length. The resulting histograms can be

found in Fig. 5, along with the correspondingly calculated initial fracture energy, Gf = `1f
′2
t /E.

When comparing results for experiment samples and simulation samples, the following points can be drawn.

The average tensile strength obtained for the simulation samples is 50% lower than that for the experiment

samples. The average tensile characteristic length of the simulation samples is 15% higher than that of the

experiment samples. The average fracture energy for the simulation samples is about 20% higher than that

for the experiment samples. As shown in Fig. 5, both f ′t and `1 of the experiment samples have high standard

deviation, which indicates that CSEC is very sensitive to noise in data, with the same level of mean value

and scatter. Provided that the LDPM parameters are well calibrated and validated based on a comprehensive

experimental campaign [1], the LDPM mesoscale tensile strength, σt = 11.9 MPa, and the tensile characteristic

length, `t = 21 mm, (see Table 2) can be utilized as reference to evaluate the sensitivity study results. The
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tensile strength, f ′t = 11.4 MPa, and tensile characteristic length, `1 = 21.5 mm, for simulation samples are

almost identical with the LDPM parameters. While for experiment samples, `1 = 18.6 mm, is 11% lower than

σt, and f ′t = 22.2 MPa, almost doubles f ′t . The high sensitivity of obtaining f ′t by experiment samples can

be overcome by excluding the outliers. When putting an upper bound of 40 for fitting tensile strength of the

experimental sample, in other words, excluding outliers higher than 40, the average f ′t then drops from 22.2

MPa to 16.9 MPa, with negligible change in fitted average `1 and Gf . In conclusion, the values of tensile

strength and tensile characteristic length from CSEC analysis agree with those adopted in LDPM; In terms of

sensitivity, obtaining `1 and Gf by CSEC is fairly stable against noise in the data; On the other hand, getting

f ′t through CSEC can be very sensitive to noise in the data, whereas, exerting upper and lower bounds of the

expected range of f ′t can improve its accuracy.
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(a)

(b)

(c)

Figure 3: UHPC size effect experiments vs. LDPM simulations and simulated crack propagation for (a)
size M (b) size L (c) size XL
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Figure 4: UHPC CSEC and SEL data fitting for (a) experimental and (b) simulated ultimate strengths of
size M, L, and XL
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Figure 5: Sensitivity study of CSEC in respect to experimental and simulated peak strength: fitted (1)
tensile strength (2) tensile characteristic length (3) initial fracture energy from 10,000 samples
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4 HTC-LDPM Simulations and Predictions

Predictive size effect simulations for the UHPC (size M, L, XL, XXL) are carried out for the same early ages as

investigated by Wan et al. [1]: HR curing 3, 7, 14, 28 days, and HR+WB curing 14/28 days. Size M, L, XL

have the same nominal dimensions as described in the previous sections. The largest size XXL is geometrically

upscaled from size L by
√

5 on span and height while keeping the thickness constant. It has the nominal

dimensions of 284×25.4×1420 mm (5
√

5×1×25
√

5 in) with span of 1136 mm (20
√

5 in). The simulated

stress-strain curves for all sizes and ages are shown in Fig. 6, along with the fitted CSEC & SEL curves for

the corresponding early ages. At least five specimens with different discrete particle placement were utilized for

each size and age to ensure representative simulation. Size M has a relatively large scatter in the late post-peak

phase. Size L shows a relatively large scatter in the ultimate peak stress. In spite of the scatter, the predicted

size effect simulations by the HTC-LDPM computational framework show a perfectly decreasing relation of

strength in terms of size and increasing trend of strength versus aging. The strength-size relationship for each

age can be described very well by both the size effect models CSEC & SEL.

The same procedures as discussed in the previous section of CSEC and SEL analysis (Eq. 5 & 6) are followed.

The shape factor, α, initial energy release rate, g0, and its first order derivative, g′0, remain the same. Tensile

strength, f ′t , and characteristic length, `1, are obtained from data fitting, which are then utilized to compute

the initial fracture energy, Gf , for each age. Young’s modulus for the early ages, indirectly determined by TPB

simulations by matching experimental data [1], were utilized to calculate Gf and are listed in Table 3. Hence,

the average correlation coefficient R2 of CSEC for the predicted ultimate strength on different ages is higher

than 0.999. In other words, the CSEC analyses highly agree with the HTC-LDPM early age model. The SEL

fits have a slightly lower, however also quite high, R2 value of 0.995, solely lacking the representation of plastic

limit end for small sizes.

In order to assess the mesoscale stress level and energy dissipation for the beams of different ages and sizes,

the relevant data is extracted from the LDPM simulations. Stress along the ligament, obtained as homogenized

stress tensor of each tetrahedron for each simulated age and size by LDPM, is plotted in Fig. 7. The subfigures

from left to right are of increasing sizes and from top to bottom are for increasing aging degree. The X axis

is the stress level; The Y axis is the normalized ligament height, with value 0 being the initial notch tip and

value 1 meaning the top of the specimen. Investigated time-points during each simulated test are at 50% of
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peak in the linear section, at peak, 50% post peak and at 20% remaining strength in the post peak. The

simulated specimens have the same minimum and maximum aggregate sizes of 2-4 mm. As a result, the larger

the specimen size, the smoother the stress profile and the clearer the trend to be observed. By comparing the

stress profiles of different ages and sizes, the following observations can be made: the maximum stress level

for each age remain the same for different sizes; The maximum stress tensor readings for all sizes increase in

terms of aging and are equal to the mesoscale tensile strength of LDPM for the corresponding ages; As the

crack propagates, the corresponding section under tension shifts upwards and the top section under compression

decreases in terms of height but with increasing compressive stress; The hinge, where zero-stress-point lies at

peak strength of each test, is located at about half of the ligament height for all sizes and ages.

Similarly, the accumulated dissipated energy during fracture along the ligament of the investigated sizes

and ages are shown in Fig. 8. Corresponding to the stress profiles in Fig. 7, the dissipated energies are plotted

at 50% before peak, at peak, 50% post peak and at 20% remaining strength. For each size, the dissipated

energy increases in terms of aging degree until humidity curing 28 days and drops for hot water bath curing 28

days. This agrees with the age dependent fracture energy obtained from experiments, calibrated and validated

HTC-LDPM simulations, as well as CSEC and SEL analysis, which all conclude that the fracture energy can

reach a peak in terms of aging degree. In general, the larger the size, the higher the total dissipated energy is

accumulated, which can be estimated as the area under the curves in Fig. 8. However, the maximum dissipated

energy level is roughly the same for different sizes if a fracture process zone fully develops. For size XL and XXL,

the dissipated energy after peak reaches the maximum value for about 50% of the ligament, indicating that a

fracture process zone fully develops. For size L, the maximum dissipated energy level, located at at the notch

tip, is roughly the same as of size XL & XXL. This means that, for size L, a fracture process zone develops only

close to the notch tip due to its size limit. While for size M, the dissipated energy is lower than the maximum

level as of size L, XL & XXL, indicating that a fracture process zone is not fully developed due to its size limit.

Table 3: UHPC Young’s Modulus Evolution on Early Age
Age HR 3d HR 7d HR 14d HR 28d WB 14/28 WB 120d
E [MPa] 27089 34267 37669 39323 46302 46326
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Figure 6: A-LDPM size effect predictions and CSEC & SEL analysis for (a) humidity room (HR) curing
3 days (b) HR 7 days (c) HR 14 days (d) HR 28 days and (e) hot water bath (WB) curing 28 days. SEL
curve is normalized based on CSEC fitting
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Figure 7: Stress profiles along ligament from A-LDPM simulations for size effect study; from left to right:
size M, L, XL, XXL; top to bottom: age HR3d, HR7d, HR14d, HR28d, WB28d
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Figure 8: Dissipated energy along ligament from A-LDPM simulations for size effect study; from left to
right: size M, L, XL, XXL; top to bottom: age HR3d, HR7d, HR14d, HR28d, WB28d
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5 Fracture Characteristics at Early Age

There are a limited number of studies in the literature concerning how fracture energy changes during concrete

aging at early ages. Schutter and Taerwe [34] found, for regular concrete with different types of cement under

TPB, that the fracture energy increases from 1 day to 28 days of age. Ostergaard [22] also concluded from

wedge-splitting-test (WST) on 1 ∼ 28 days, utilizing a high performance concrete, that the fracture energy

increases while aging. Whereas, Reis [12] conducted TPB tests on PET polymer concrete and concluded

that fracture energy decreases from day 1 to day 14. Similarly, Gettu [31] also found that fracture energy

decreases from day 4 to 232 days, utilizing a high-strength silica fume concrete with mix proportions close to

the UHPC used in this study. Furthermore, Kim et al. [24] observed from wedge-splitting-test an increasing

trend of fracture energy for low strength concrete, however, actually increasing then decreasing fracture energy

for normal strength and high strength concretes from day 1 to day 28.

Through the available experimental campaign on fracture tests in the literature, a conclusion can be drawn

that the fracture energy does not necessarily increase in terms of concrete aging. Furthermore, Wan et al.

[1] observed from the TPB fracture tests for the UHPC investigated that the fracture energy first increases

then decreases in terms of aging degree. More specifically, the fracture energy initially increases as the cement

hydration and silica fume reaction go up and start approaching their asymptotic values under the humidity room

curing; This trend reverses as the material further matures and reaches the ultimate properties under hot water

bath curing. Note that the theoretical asymptotes of cement hydration and silica fume reaction vary under

different curing conditions, which, for 100% humidity room curing, are lower than the values for hot water bath

curing. With the aging functions developed by Wan et. al [1] relating mesoscale LDPM parameters and aging

degree λ:

Normal Modulus: E0 = E∞0 ∗ λ (7)

Tensile Strength: f
′

t = f
′∞
t ∗ λna (8)

Tensile Characteristic Length: `t = `∞t (ka(1− λ) + 1) (9)

The mesoscale fracture energy, Gt = `tf
′2
t /2E0, can be derived as a function of aging degree in the following
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form:

Gt = λ2na
`∞t σ

∞2
t

2E∞0

(
ka + 1

λ
− ka

)
∝ λ2na

(
ka + 1

λ
− ka

)
(10)

where na and ka are positive constants. Mathematically, Gt can increase or decrease depending on na and

ka, which describe the evolution of material properties. This equation, derived from the well structured and

experimentally validated HTC-LDPM early age model for UHPC, explains the phenomenon that the fracture

energy can have non-monotonous relationship with concrete aging at early age depending on the material. The

reason is that the fracture energy is dependent on modulus, tensile characteristic length, and tensile strength,

which may evolve at different rates.

The fracture related parameters are plotted in Fig. 9. The tensile characteristic length, `1, and the tensile

strength, f ′t , obtained from CSEC and SEL data fitting, as well as mesoscale `t and σt from LDPM simulations

are plotted in Fig. 9a&b. The corresponding initial fracture energy, Gf , from CSEC and SEL analysis, as well

as the mesoscale fracture energy, Gt, from HTC-LDPM simulations, in terms of aging degree are plotted in

Fig. 9c. The corresponding ages and aging degrees are, from left to right, HR3 (0.558), HR7 (0.706), HR14

(0.776), HR28 (0.810), WB14/28 days (0.954). While the initial fracture energy Gf from SEL is close to that

of CSEC, the mesoscale Gt calculated as, Gt = `tσ
2
t /2E0, is about one third of CSEC Gf . The difference is due

to different mechanism of energy dissipation. The meso-scale fracture energy Gt is defined as mode I fracture

energy under direct tension on single facets, while dissipation in shear is explicitly captured by friction laws.

However, Gf , from both CSEC analysis and LDPM local analysis, includes contributions of energy dissipation

from both tension and shear inside the fracture process zone, lumped into the cohesive crack. Fig. 9d presents

a typical softening curve in a generic stripe of a beam on age WB28d, more specifically, the local stress vs.

crack-opening relation for a 4 mm height stripe located at 4-8 mm above the notch tip, and its optimum fit. The

local cohesive stress σch is obtained from LDPM as the average of the stresses for the facets directly above the

notch and within the stripe at each unit time during the simulated test. The local crack opening w is calculated

by equation w(gd) =
∫ gd
0

dg
σch(g)

, where dgd is the increment of the dissipated energy computed as the work done

by the equivalent cohesive stress for an increment of the crack opening, dgd = σch(gd)dw [19]. The optimum

fit of such softening curves can be obtained by assuming a cohesive crack law with an initial plateau followed

by a smooth curve consisting of the sum of a straight line and an exponential function. The equation of such a

curve is f(w) = f ′t for w ≤ w0, f(w) = 0 for w ≥ wu, and f(w) = f ′t [c1 − c2w−w0

wch
+ (1− c1) exp(−w−w0

wch
)] for
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w0<w<wu [19]. The initial fracture energy describes only the first part of the softening curve (up to a stress

drop of 1/3 - 1/2 of the tensile strength) and is defined as the area under its initial tangent. It is calculated

as Gf =
f ′2t

2|f ′(0)| , where f ′(0) is the derivative of the softening curve at crack opening equal to zero, or in other

words, when σch = f ′t . By plotting and analyzing the softening curves along the ligament for size L, XL, &

XXL, the average local initial fracture energy is obtained to be Gf = 44.5 J/m2 and the local total fracture

energy GF = 93.0 J/m2 ∼= 2.1Gf . Fracture energies along the ligament for size L and XXL on age WB28d are

presented as bar plots in Fig. 10a&b respectively. As shown, the local initial fracture energy is roughly constant

along the ligament, while the total energy slightly increases then decreases along the ligament, a behavior

previously discussed by Cusatis and co-workers [19]. The drop of the total fracture energy is due to the presence

of the specimen outer surface that, constraining the propagation of the meso-cracks, induces a reduction of the

number of the fractured lattice elements and consequently the width of the fracture process zone. Moreover,

the top 20-30% of the ligament endures compressive stresses until late post-peak, thus very low or no energy

dissipation is recorded. The local initial fracture energy, Gf , is higher than the LDPM mesoscale fracture energy,

Gt = 21.1J/m2, because Gf includes also the energy dissipation due to shear. The total fracture energy, GF ,

on the other hand, agrees with the value obtained by work of fracture GF
∼= 100.6J/m2. The relationships

of the fracture energies can be concluded as follows: LDPM Gt ≤ local Gf ≤ SEL Gf ≤(∼=) CSEC Gf <

GF . However, despite the different magnitudes, all fracture energies have the same trend in terms of aging.

As shown in Fig. 9 - c, initial fracture energies from HTC-LDPM, CSEC and SEL all increase then decrease in

terms of aging degree.

While fracture energy does not have a monotonous relation with concrete aging, the tensile characteristic

length, from HTC-LDPM and CSEC & SEL, on the other hand, decreases monotonously with aging degree.

Hence, the tensile strength increases monotonously as well with aging [1]. Thus, it is reasonable to conclude

that the tensile characteristic length and the tensile strength, instead of fracture energy, are better choices to

evaluate the fracture characteristics of concrete, especially under consideration of concrete aging.

Moreover, by evaluating the “magnitude of size effect”along concrete aging, it is found that older concrete

tends to have higher “size effect”. In Fig. 11, a 3-D contour of nominal stress as a function of aging degree and

logarithmic normalized size is presented. The specimen span and height in the size effect study are designed

to have scaling factor of
√

5, thus the normalized sizes for M, L, XL, XXL have values of 1,
√

5, 5, and 5
√

5
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respectively. As shown, the strength difference with respect to size increases as concrete ages. In other words,

the size effect increases with concrete aging.
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Figure 9: Fracture characteristics at early age: age dependent (a) characteristic length (b) tensile strength
(c) fracture energy from A-LDPM simulations and CSEC & SEL analysis; (d) typical softening curve
identified in a generic stripe for age WB28d and its optimum fit
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6 Conclusions

In conclusion, the HTC-LDPM framework can accurately capture and predict the age dependent fracture be-

havior of concrete at early age and its most important consequence, the size effect. The well calibrated and

validated model is able to represent the fracture characteristics as evolutions of concrete aging. Furthermore,

the cohesive size effect curve (CSEC) method is capable of describing the ultimate strength in terms of size for

concrete, for both the experiments and the validated predictive simulations.

According to the experimental studies, the numerical simulations as well as the size effect analyses, the

following conclusions can be drawn:

• The HTC-LDPM model can accurately capture and predict the age dependent size effect and fracture

characteristics for concrete, in this work investigated through three point bending tests.

• Observed from HTC-LDPM, CSEC & SEL analyses, the fracture energy may exhibit a non-monotonous

relationship with the maturity of concrete. The reason is that the fracture energy is dependent on

modulus, tensile characteristic length, and tensile strength, which may evolve at different rates. Since

fracture energy is not an independent material property it is not suitable for the formulation of fracture

aging laws.

• The fracture energies by different methods and on different scales are found to have the following rela-

tionships: LDPM Gt ≤ local Gf ≤ SEL Gf ≤(∼=) CSEC Gf < GF .

• Contrary to fracture energy the tensile characteristic length changes monotonously in all investigated cases

and shows a linear decreasing dependence on aging degree for the studied UHPC.

• The CSEC method can fit the size effect data on various early ages with high correlation coefficients

above 99%. It can represent the size effect phenomenon of concrete very well and thus can be utilized

reliably to predict nominal strength for a broad size and age range outside the laboratory scale.

• In terms of sensitivity of CSEC, obtaining `1 and Gf is fairly stable against noise in the data; On the

other hand, getting f ′t through CSEC can be very sensitive to noise in the data, whereas, exerting upper

and lower bounds of the expected range of f ′t can improve its accuracy.
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• While the SEL method can fit the size effect data almost as good as CSEC, and their asymptotes coincide

with each other for large sizes, SEL solely lacks the representation of plastic limit for small sizes.

• Size effect of concrete is age dependent. The magnitude of size effect increases with concrete aging for

the investigated UHPC.
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Appendix A - The Mixture Constituents and Curing Procedures

The mixture proportions for the adopted UHPC mix design are reported below in Table 4. The material

composition consists of LaFarge Type H cement, F-50 Ottawa sand, Sil-co-sil 75 silica flour, Elkem ES-900W

silica fume, ADVA-190 Superplasticizer and tap water. The maximum particle size, 0.6 mm, is limited to that of

silica sand, which is a foundry grade Ottawa sand [17]. In the author’s previous studies [1], two curing protocols

with and without hot water bath curing were explored. A first group of specimens was kept in the humidity

room (HR) for 14 days, a second group, instead, was kept in the humidity room for 7 days after which it was

placed in hot water bath (WB) at 85◦C for another 7 days. After 14 days HR and WB curing, the specimens

of both groups were stored at room temperature and average RH of 50% until testing. In this study, the size

effect experimental specimens followed the WB curing procedures, while the predictive simulations were ran for

both curing routines.

Table 4: Constituents and Mixing Proportions of UHPC CorTuf
Ingredient Type Proportion Weight per kg
Cement Lafarge Type H 1.0000 0.3497
Sand F-50 0.9674 0.3383
Silica Flour Sil-co-sil 75 0.2768 0.0968
Silica Fumes Elkem ES-900W 0.3890 0.1360
Superplasticizer ADVA-190 0.0180 0.0063
Water Tap Water 0.2082 0.0728

Appendix B - The Computational Framework

The proposed hygro-thermo-chemo-mechanical early-age model for cement based concrete consists of two major

components: the HTC model and the LDPM with aging material properties.

Hygro-Thermo-Chemical (HTC) model

The behavior of concrete at early age heavily depends on moisture content and temperature. The overall

moisture transport can be described through Fick’s law that expresses the flux of water mass per unit time

J as a function of the spatial gradient of the relative humidity h. Assuming that evaporable water we is

a function of relative humidity h, degree of hydration αc, and degree of silica fume reaction αs, one can

write we = we(h, αc, αs), which represents an age-dependent sorption/desorption isotherm. Consequently, the
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moisture mass balance equation reads [15]: ∇ · (Dh∇h)− ∂we
∂h

∂h
∂t
−
(
∂we
∂αc

α̇c + ∂we
∂αs

α̇s + ẇn

)
= 0, where Dh is

moisture permeability and wn is nonevaporable water. The enthalpy balance is also influenced by the chemical

reactions occurring at the early age. One can write, at least for temperatures not exceeding 100 ◦C [35],

∇ · (λ∇T )− ρct ∂T∂t + α̇ssQ̃
∞
s + α̇ccQ̃

∞
c = 0, where Q̃∞c = hydration enthalpy, Q̃∞s = latent heat of silica-fume

reaction per unit mass of reacted silica-fume, ρ is the mass density of concrete, λ is the heat conductivity, and

ct is the isobaric heat capacity of concrete.

With the assumption that the thermodynamic force is governed by an Arrhenius-type equation and that

the viscosity governing the diffusion of water though the layer of cement hydrates is an exponential function

of the hydration extent [36], Cervera et al. [28] proposed the evolution equation for the hydration degree:

α̇c = Ac(αc)e
−Eac/RT , and Ac(αc) = Ac1(

ac2
α∞
c

+ αc)(α
∞
c − αc)e−ηcαc/α

∞
c , where Eac is the hydration activation

energy, R is the universal gas constant, and ηc, Ac1, and Ac2 are material parameters. To account for the

situation that the hydration process slows down and may even stop if the relative humidity decreases below a

certain value, the equation can be rewritten as: α̇c = Ac(αc)βh(h)e−Eac/RT , where βh(h) = [1 + (a− ah)b]−1.

The function βh(h) is an empirical function proposed by Bažant and Prasannan [39] and a & b are constant model

parameters. Similarly, the degree of silica fume (SF) reaction, αs is introduced [15], α̇s = As(αs)e
−Eas/RT ,

and As(αs) = As1(
As2
α∞
s

+ αs)(α
∞
s − αs)e−ηsαs/α

∞
s , where As is the SF normalized affinity, Eas is the activation

energy of SF reaction, and α∞s is the asymptotic value of the SF reaction degree.

To account for this additional effect from temperature [26], the aging degree λ is typically used and for-

mulated as: λ̇ =
(

Tmax−T
Tmax−Tref

)nλ
(Bλ − 2Aλα), where Bλ = [1 + Aλ(α

2
∞ − α2

0)]/(α∞ − α0), nλ and Aλ are

model parameters obtained from fitting experimental data, and α is the overall degree of reaction defined as

[9]: α(t) = αc(t)cQ̃∞
c +αs(t)sQ̃∞

s

cQ̃∞
c +sQ̃∞

s
.

Age-dependent Lattice Discrete Particle Model

The Lattice Discrete Particle Model (LDPM) is a mesoscale discrete model that simulates the mechanical

interaction of coarse aggregate pieces embedded in a cementitious matrix (mortar). In LDPM, rigid body

kinematics is used to describe the deformation of the lattice particle system and the displacement jump, JuCK,

at the centroid of each facet is used to define measures of strain as eN = nTJuCK
`

; eL = lTJuCK
`

; eM = mTJuCK
`

,

where ` = interparticle distance; and n, l, and m, are unit vectors defining a local system of reference attached
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to each facet.

Next, a vectorial constitutive law governing the behavior of the material is imposed at the centroid of

each facet. In the elastic regime, the normal and shear stresses are proportional to the corresponding strains:

tN = ENe
∗
N = EN(eN − e0N); tM = ET e

∗
M = ET (eM − e0M); tL = ET e

∗
L = ET (eL − e0L), where EN = E0,

ET = αE0, E0 = effective normal modulus, and α = shear-normal coupling parameter; and e0N , e0M , e0L

are mesoscale eigenstrains that might arise from a variety of phenomena such as, but not limited to, thermal

expansion, creep, shrinkage, and chemical reactions, e.g. alkali-silica reaction.

For stresses and strains beyond the elastic limit, the LDPM formulation considers the following nonlinear

mesoscale phenomena [10]: (1) fracture and cohesion; (2) compaction and pore collapse; and (3) friction.

Fracture and cohesion due to tension and tension-shear. For tensile loading (e∗N > 0), the fracturing

behavior is formulated through an effective strain, e∗ =
√
e∗2N + α(e∗2M + e∗2L ), and stress, t =

√
t2N + (t2M + t2L)/α,

which define the normal and shear stresses as tN = e∗N(t/e∗); tM = αe∗M(t/e∗); tL = αe∗L(t/e∗). The effec-

tive stress t is incrementally elastic (ṫ = E0ė) and must satisfy the inequality 0 ≤ t ≤ σbt(e, ω) where

σbt = σ0(ω) exp [−H0(ω)〈e− e0(ω)〉/σ0(ω)], 〈x〉 = max{x, 0}, and tan(ω) = e∗N/
√
αe∗T = tN

√
α/tT , and

e∗T =
√
e∗2M + e∗2L . The post peak softening modulus is defined as H0(ω) = Ht(2ω/π)nt , where Ht is the

softening modulus in pure tension (ω = π/2) expressed as Ht = 2E0/ (`t/`− 1); `t = 2E0Gt/σ
2
t ; ` is the

length of the tetrahedron edge; and Gt is the mesoscale fracture energy. LDPM provides a smooth transi-

tion between pure tension and pure shear (ω = 0) with parabolic variation for strength given by σ0(ω) =

σtr
2
st

(
− sin(ω) +

√
sin2(ω) + 4α cos2(ω)/r2st

)
/[2α cos2(ω)], where rst = σs/σt is the ratio of shear strength

to tensile strength.

Compaction and pore collapse from compression. Normal stresses for compressive loading (e∗N < 0)

must satisfy the inequality −σbc(eD, eV ) ≤ tN ≤ 0, where σbc is a strain-dependent boundary depending on the

volumetric strain, eV , and the deviatoric strain, eD = eN−eV . The volumetric strain is computed by the volume

variation of the Delaunay tetrahedra as eV = ∆V/3V0 and is assumed to be the same for all facets belonging

to a given tetrahedron. Beyond the elastic limit, −σbc models pore collapse as a linear evolution of stress for

increasing volumetric strain with stiffness Hc for −eV ≤ ec1 = κc0ec0: σbc = σc0 + 〈−eV − ec0〉Hc(rDV );

Hc(rDV ) = Hc0/(1 +κc2 〈rDV − κc1〉); σc0 is the mesoscale compressive yielding stress; rDV = eD/eV and κc1,

κc2 are material parameters. Compaction and rehardening occur beyond pore collapse (−eV ≥ ec1). In this
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case one has σbc = σc1(rDV ) exp [(−eV − ec1)Hc(rDV )/σc1(rDV )] and σc1(rDV ) = σc0 + (ec1 − ec0)Hc(rDV ).

Friction due to compression-shear. The incremental shear stresses are computed as ṫM = ET (ė∗M − ė
∗p
M)

and ṫL = ET (ė∗L − ė
∗p
L ), where ė∗pM = ξ̇∂ϕ/∂tM , ė∗pL = ξ̇∂ϕ/∂tL, and ξ is the plastic multiplier with loading-

unloading conditions ϕξ̇ ≤ 0 and ξ̇ ≥ 0. The plastic potential is defined as ϕ =
√
t2M + t2L − σbs(tN), where the

nonlinear frictional law for the shear strength is assumed to be σbs = σs+(µ0−µ∞)σN0[1−exp(tN/σN0)]−µ∞tN ;

σN0 is the transitional normal stress; µ0 and µ∞ are the initial and final internal friction coefficients.

Besides the compatibility and constitutive equations discussed above, the governing equations of the LDPM

framework are completed through the equilibrium equations of each individual particle.

The proposed aging functions relating the mesoscale material parameters read E0 = E∞0 λ; σt = σ∞t λ
na ; σc =

σ∞c λ
na ; σN0 = σ∞N λ

na ; `t = `∞t (ka(1 − λ) + 1), where na and ka are positive constants. As seen, the normal

modulus, E0, which is related to the elastic modulus, is assumed to have a linear relation with aging degree λ.

Tensile strength, σt, compressive yielding stress, σc, and transitional stress, σN0, on the other hand, are assumed

to have power-law type relations with aging degree. Lastly, the tensile characteristic length, `t, is assumed to

be a linear decreasing function with aging degree, to simulate the well known brittleness increase with age. All

the aging functions are formulated such that the corresponding parameters approach their asymptotic values

for λ approaching the value of 1. The other LDPM mesoscale parameters, are assumed age-independent due

to a lack of relevant experimental data on the response in compression under confinement.
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[14] Z. P. Bažant, Q. Yu. Universal size effect law and effect of crack depth on quasi-brittle structure strength

Journal of Engineering Mechanics, ASCE, Feb, 2009.

[15] G. Di Luzio and G. Cusatis. Hygro-thermo-chemical modeling of high performance concrete. I: Theory.

Cement and Concrete composites 31 (5), 301-308, 2009.

[16] G. Di Luzio and G. Cusatis. Hygro-thermo-chemical modeling of high performance concrete. II: Numerical

implementation, calibration, and validation. Cement and Concrete composites 31 (5), 309-324, 2009.

[17] M. J. Roth, T. S.Rushing, O. G. Flores, D. K. Sham, and J. W. Stevens. Laboratory Characterization of

Cor-Tuf Flexural and Splitting Tensile Properties U.S. Army Engineer Research and Development Center,

Vicksburg, MS. 2009.

[18] L. Cedolin, G. Cusatis Identification of concrete fracture parameters through size effect experiments. Cem

Concr Comp 2008; 30(9):788-797.

[19] G. Cusatis, L. Cedolin Two-scale study of concrete fracturing behavior. Eng. Frac. Mech. 74 (2007) 3-17.

[20] D. Gawin, F. Pesavento and B.A. Schrefler. Hygro-thermo-chemo-mechanical modelling of concrete at early

ages and beyond, Part I: hydration and hygrothermal phenomena. Int J Numer Methods Eng 2006;67:299-

331.

[21] D. Gawin, F. Pesavento and B.A. Schrefler. Hygro-thermo-chemo-mechanical modelling of concrete at early

ages and beyond, Part II: shrinkage and creep of concrete. Int J Numer Methods Eng 2006;67:332-363.

[22] L. Ostergaard, D. Lange, H. Stang. Early-age stress-crack opening relationships for high performance

concrete. Cement & Concrete Composites 26 (2004) 563-572.

33



[23] R. Lackner and H. A. Mang. Chemoplastic material model for the simulation of early-age cracking: From

the constitutive law to numerical analyses of massive concrete structures. Cement Concrete Composites

2004, 26: 551-562.

[24] J-K. Kim, Y. Lee, S-T Yi. Fracture characteristics of concrete at early ages. Cement and Concrete Research

34(2004) 507-519.

[25] O. Bernard, F-J. Ulm, and E. Lemarchand. A multi scale micromechanics-hydration model for the early-age

elastic properties of cement-based materials. Cement and Concrete Research, 33, 1293-1309, 2003.

[26] M. Cervera, J. Oliver, and T. Prato. Simulation of construction of RCC dams. I: temperature and aging.

Journal of Structural Engineering. Vol. 126, No. 9, September 2000.

[27] M. Cervera, J. Oliver, and T. Prato. Simulation of construction of RCC dams. II: stress and damage.

Journal of Structural Engineering. Vol. 126, No. 9, September 2000.

[28] M. Cervera, J. Oliver, and T. Prato. Thermo-chemo-mechanical model for concrete. I: hydration and aging.

Journal of Engineering Mechanics, September 1999.

[29] M. Cervera, J. Oliver, and T. Prato. Thermo-chemo-mechanical model for concrete. II: damage and creep.

Journal of Engineering Mechanics, September 1999.
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