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Abstract

Design of large composite structures requires understanding the scaling of their mechan-
ical properties, an aspect often overlooked in the literature on composites.

This contribution analyzes, experimentally and numerically, the intra-laminar size e↵ect
of textile composite structures. Test results of geometrically similar Single Edge Notched
specimens made of [0�]

8

epoxy/carbon twill 2⇥2 laminates are reported. Results show that
the nominal strength decreases with increasing specimen size and that the experimental
data can be fitted well by Bažant’s size e↵ect law, allowing an accurate identification of the
intra-laminar fracture energy of the material, Gf .

The importance of an accurate estimation of Gf in situations where intra-laminar frac-
turing is the main energy dissipation mechanism is clarified by studying numerically its e↵ect
on crashworthiness of composite tubes. Simulations demonstrate that, for the analyzed ge-
ometry, a decrease of the fracture energy to 50% of the measured value corresponds to an
almost 42% decrease in plateau crushing load. Further, assuming a vertical stress drop af-
ter the peak, a typical assumption of strength-based constitutive laws implemented in most
commercial Finite Element codes, results in an strength underestimation of the order of 70%.

The main conclusion of this study is that measuring accurately fracture energy and mod-
eling correctly the fracturing behavior of textile composites, including their quasi-brittleness,
is key. This can be accomplished neither by strength- or strain-based approaches, which ne-
glect size e↵ect, nor by LEFM which does not account for the finiteness of the Fracture
Process Zone.

Keywords: A. Textile Composites, B. Non-Linear Fracture Mechanics, C. Damage

Mechanics, D. Size e↵ect, E. Two-dimentional composites, F. Microplane model.

1. Introduction

Thanks to their outstanding specific mechanical properties, the engineering use of textile

composites is becoming broader and broader. Current applications include land, marine and

⇤Corresponding Author,
Email address: g-cusatis@northwestern.edu (Gianluca Cusatis)

Preprint submitted to Composites Science and Technology May 19, 2016



air transportation, wind and tidal energy production, and blast protection of civil infrastruc-

tures and vehicles [1–3]. However, design of large composite structures requires capturing

the scaling of their mechanical properties, an aspect often overlooked in the literature on

composites. This can be achieved only by abandoning the current design paradigm, which

relies on strength-based approaches incapable of predicting any scaling, and acknowledging

the quasibrittle character of these materials.

Due to the complex mesostructure characterizing textile composites (and other quasib-

rittle materials such as concrete, nanocomposites, ceramics, rocks, sea ice, and many bio-

materials, just to mention a few), the size of the non-linear Fracture Process Zone (FPZ)

occurring in the presence of a large stress-free crack is usually not negligible [4–6]. The stress

field along the FPZ is nonuniform and decreases with crack opening, due to discontinuous

cracking, crack bridging by fibers, and frictional pullout of inhomogeneities. As a conse-

quence, the fracturing behavior and, most importantly, the energetic size e↵ect associated

with the given structural geometry, cannot be described by means of the classical Linear

Elastic Fracture Mechanics (LEFM). To capture the e↵ects of a finite, non-negligible FPZ,

the introduction of a characteristic (finite) length scale related to the fracture energy and the

strength of the material is necessary [4, 7]. However, estimating accurately these material

properties is far from easy because the fracture tests usually exhibit an extreme snap-back

at peak load, with a loss of stability [7, 8].

A possible way to overcome these issues is size e↵ect testing [4, 7]. This study proposes

an experimental and numerical investigation on the e�cacy of the intra-laminar size e↵ect

testing to characterize the fracturing behavior of textile composite. It is worth remarking

here that the size e↵ect method of measuring the fracture properties is easier to implement

than other methods because only peak load measurements are necessary. The post-peak

behavior, crack tip displacement measurement, and optical measurement of the crack tip

location are not needed, and even a soft testing machine without servo-control can be used.

2. Test description

2.1. Materials

Experiments were conducted on specimens manufactured by compression molding. A

Bisphenol A diglycidyl ether (DGEBA)-based epoxy resin was chosen as polymer matrix

whereas the reinforcement was provided by a twill 2⇥2 fabric made of carbon fibers. The
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material was characterized following the ASTM standard procedures [12] testing [0�]
8

and

[45�]
8

coupons under uniaxial tension. The results of this characterization are listed in Table

1.

2.2. Specimen characteristics

Following Bažant et al. [4, 7], intra-laminar size e↵ect tests were conducted on single-

edge-notched tension (SENT) specimens (see Figure 1), using a [0�]
8

lay-up with a constant

thickness of approximately 1.9 mm. The SENT specimens were preferred to Double-Edge

Notched Tension (DENT) specimens, for which two cracks typically initiate at the notch

tips but ultimately only one of the two cracks can propagate, causing the response to be

asymmetric [13].

Specimens of three sizes (three for each size), geometrically scaled in two-dimension (see

Table 2) as 1:2:4, were tested. The first half of the notch was made by means of a diamond

coated bend saw which provided a width of roughly 1 mm whereas the second half was made

using a diamond-coated miniature blade thanks to which a width of 0.2 mm was obtained

in all cases (Figure 2). Accordingly, the resulting crack tip radius was 0.1 mm, about 70

times smaller than the size of a Representative Unit Cell (RUC) of the material. It is worth

noting that the sawing action of the blade prevented the formation of a Fracture Process

Zone (FPZ) before running the tests contrarily to common pre-fracturing procedures [14].

All the specimens were prepared with 38 mm long glass/epoxy tabs for gripping purposes.

The tab length (grip constraint) was not scaled because it has no appreciable e↵ect on the

stored energy and because fracture always occurs away from the grips.

The top surface of all the SENT specimens was treated to allow Digital Image Correlation

(DIC) analysis. A thin layer of white paint was deposited on a D ⇥D area embedding the

crack. Then, black speckles of average size 0.01 mm were spray-painted on the surface after

drying.

2.3. Testing

The tests were performed on a closed-loop servohydraulic MTS machine with 89 kN

capacity and at constant crosshead rate (stroke control). The rate was adjusted for the

di↵erent sizes to achieve roughly the same strain rate of 0.2 percent/min in the gage section.

With such settings, the test lasted no longer than approximately 10 min for all specimens.
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Stroke, force, and loading time were recorded with a sampling frequency of 10 Hz. A DIC

system from Correlated Solutions [15] composed by a 5 MP digital camera and a workstation

for image postprocessing was used to measure the displacement field in the specimen with

an acquisition frequency of 1 Hz.

3. Experimental results

After the completion of the experiments, the load and displacement data were analyzed.

Figure 3a shows, for the various sizes, the typical load-displacement plots reported. It is

worth noting that, for the largest specimen size, these curves are almost linear up to failure,

which is an indication of pronounced brittle behavior. Conversely, a significant nonlinear

segment before the peak stress indicates hardening inelastic behavior and reduced brittleness

(or higher ductility) for the smallest specimen sizes.

After reaching the peak load, the specimens exhibited snap-back instability for all in-

vestigated sizes. As a consequence, the failures were catastrophic (dynamic), and occurred

shortly after the peak load. Damage consisting of microcracks in layers, delamination be-

tween layers before peak load and tow breakage and pull-out was observed in the tests.

Figure 3b shows the typical appearance of the specimens after failure and the test results

for the notched specimens are summarized in Table 3. The table also reports the specimen

nominal strength. This is defined as the average stress at failure based on the unnotched

cross section, �N = P
max

/Dt.

It is worth noting that, according to strength-based criteria (such as e.g. Tsai and Wu [16]

among others), the nominal strength does not depend on the structural size. However, Table

3 does show a significant decrease of �N with increasing characteristic size of the specimen.

It is clear that strength based criteria cannot capture this trend. However, neither can

classical Linear Elastic Fracture Mechanics (LEFM) which, instead, would predict a decrease

proportional to D�1/2.

4. Discussion

4.1. Analysis of intra-laminar size e↵ect tests by Size E↵ect Law

The intra-laminar size e↵ect tests can be analyzed by means of an equivalent linear

elastic fracture mechanics approach, which results in an equation, known as type II Size
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E↵ect Law (SEL) [4, 17], which relates the nominal strength, �N , to the characteristic size

of the structure, D.

4.1.1. Energy release rate and size e↵ect law for orthotropic materials

Following Bao et al. [19], the Mode I stress intensity factor for an orthotropic material

can be written as:

KI = �N

p
⇡D↵ ⇠

�
↵,�1/4L/D, ⇢

�
(1)

where ↵ = a/D = dimensionless crack length, �1/4L/D = rescaled length/width ratio,

⇠ (↵,�1/4L/D, ⇢) is a dimensionless function accounting for geometric and elastic e↵ects and

⇢ and � are dimensionless elastic parameters defined as follows:

⇢ =

p
E

1

E
2

2G
12

�
p
⌫
12

⌫
21

, � =
E

2

E
1

(2)

In the previous expressions, 1 and 2 represent the weft and warp yarn directions, respectively

(Figure 2) and E
1

⇡ E
2

, G
12

, ⌫
12

= ⌫
21

are the in-plane elastic constants of the textile

composite.

The energy release rate can be written starting from the stress intensity factor as:

G(↵) =

s
1 + ⇢

2E
1

E
2

p
�
K2

I (3)

Now, recalling Eq. (1), one can write the energy release rate as a function of relative crack

length as:

G (↵) =
K2

I

E⇤ =
�2

ND

E⇤ g (↵) (4)

where

E⇤ =

s
2E

1

E
2

p
�

1 + ⇢
, g (↵) = ⇡↵

⇥
⇠
�
↵,�1/4L/D, ⇢

�⇤
2

(5)

It should be noted that Eq. (5) defines an e↵ective elastic modulus, E⇤, dependent on the

orthotropic properties of the composite while g(↵) is the dimensionless energy release rate.

Thanks to the foregoing expressions, the relation between the nominal strength and the

structure characteristic size has now the same form as the isotropic case (see e.g. [4]). In

this case, the failure condition can be written [4, 17] with reference to an e↵ective crack

length as:

G (↵
0

+ cf/D) =
�2

ND

E⇤ g (↵) = Gf (6)
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where Gf = initial fracture energy of the material and cf = e↵ective FPZ length, both

assumed to be material properties. It should be remarked that this equation characterizes

the peak load conditions if g
0
(↵) > 0, i.e. only if the structure has positive geometry [4, 17].

By approximating g(↵) with its Taylor series expansion at ↵
0

and retaining only up to

the linear term of the expansion, one obtains:

�N =

s
E⇤ Gf

Dg(↵
0

) + cfg0(↵0

)
(7)

This equation relates the nominal strength of radially scaled structures to a characteristic

size, D and it can be rewritten in the following form:

�N =
�
0p

1 +D/D
0

(8)

where �
0

= (E⇤ Gf/cfg
0
(↵

0

))1/2; and D
0

= cfg
0
(↵

0

)/g(↵
0

) = constant, depending on both

FPZ size and specimen geometry. Contrarily to classical LEFM, Eq. (8) is endowed with

a characteristic length scale D
0

. This is the key to describe the transition from ductile to

brittle behavior with increasing structure size.

4.1.2. Fitting of experimental data by SEL

The parameters of SEL, Eq. (8), can be determined by regression analysis of experimental

data. To this aim, it is convenient to define the following:

X = D, Y = ��2

N (9)

�
0

= C�1/2, D
0

=
C

A
=

1

A (Bft)
2

(10)

Eq. (8) can now be expressed in the following form:

Y = C + AX (11)

A linear regression analysis was conducted as represented in Figure 4a and provided the

following parameter estimates A = 0.305 GPa�2mm�1 and C = 2.419 GPa�2, and from Eqs.

(10a,b), D
0

= 7.93 mm and �
0

= 643 MPa.

The fitting of the experimental data by SEL is shown in Figure 4b where the normalized

strength, �N/�0

is plotted as a function of the normalized characteristic size D/D
0

in double

logarithmic scale. The figure shows a transition from the strength criterion (plastic limit
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analysis) characterized by a horizontal asymptote, to an asymptote of slope �1/2, repre-

senting LEFM. The intersection of the two asymptotes corresponds to D = D
0

, called the

transitional size.

The experimental results in Figure 4b clearly show that: (1) the failure of textile com-

posite laminates containing traction-free cracks (or notches) exhibits a significant size e↵ect;

and (2) the size e↵ect represents a gradual transition with increasing size from the strength

criterion (e.g., maximum stress) to LEFM.

These conclusions ought to be taken into account in all design situations and safety

evaluations where a large traction-free crack can grow in a stable manner prior to failure.

In particular, these conclusions are important for extrapolation from small-scale laboratory

tests to real size structures. The strength theory, which does not account for size e↵ect, is

inadequate for these applications.

4.2. Estimation of fracture properties from SEL

The parameters of the size e↵ect law, A and C, can be directly related to Gf and the

e↵ective FPZ length, cf , as follows:

A = g(↵
0

)/E⇤Gf , C = cfg
0(↵

0

)/E⇤Gf (12)

provided that the dimensionless functions g(↵), g
0
(↵) = dg/d↵, and the elastic constant E⇤

are known.

4.2.1. Calculation of g(↵), g
0
(↵), and initial fracture energy

Assuming uniform applied stress as boundary condition, Bao et al. [19] showed that the

e↵ect of the gauge length becomes negligible for �1/4L/D � 2 and the dimensionless function

⇠ can be rewritten as:

⇠
�
↵,�1/4L/D, ⇢

�
= F (↵)Y (⇢) (13)

where Y (⇢) = [1 + 0.1(⇢� 1)� 0.016(⇢� 1)2 + 0.002(⇢� 1)3]
�
1+⇢
2

��1/4
accounts for the ef-

fects of orthotropy and F (↵) is the same geometrical function of the relative crack length as

for isotropic materials. For the assumed boundary conditions, this solution provides an error

always lower than 2% and it was used in [7] to calculate g(↵) and g
0
(↵) to study size e↵ect in

unidirectional composites. Numerical investigation performed in this study shows that such

formula is also accurate within 3% error for the geometry used in this study characterized by
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�1/4L/D < 2. For ↵
0

=0.2 one obtains: g(↵
0

) = 1.1460 and g
0
(↵

0

) = 11.25. However, since

the specimens are clamped at the tabs, a uniform remote displacement rather than stress

might be a more realistic boundary condition.

In the absence of an analytical solution for displacement boundary conditions, the func-

tion g
�
↵,�1/4L/D, ⇢

�
was calculated by Finite Element Analysis in Abaqus Implicit 6.13

[20]. 8-node biquadratic plane stress quadrilateral elements (CPS8) were adopted while the

quarter element technique [21] was used at the crack tip to provide accurate results. The

smallest element size at the tip was about a
0

⇥ 10�5 leading to roughly 22, 000 elements for

the whole model. A linear elastic orthotropic constitutive model was used for the simulation

with material properties given in Table 1. The J-integral approach [22] was adopted to

estimate the energy release rate in the presence of a uniform displacement, u
0

, applied in

correspondence to the tabs, treated as rigid parts. Then, the related load, P , was computed

and used to calculate the corresponding dimensionless energy release g by means of Eq. (6).

In order to compute g
0
(↵), various dimensionless crack lengths in the close neighborhood

of the initial crack value ↵
0

= 0.2 were considered, namely ↵ = 0.1950, 0.1975, 0.2025 and

0.2050. As can be noted from Figure 5a, linear interpolation provided a very accurate fit

of the numerical data with Y = g(↵) = 2.8352X + 0.0886 and X = ↵. According to this

analysis one has g(↵
0

) = 0.6556 and g
0
(↵

0

) = 2.8352. Since the specimens are geometrically

scaled, these results apply to all the considered sizes.

From Eqs. (12a,b), the initial fracture energy and the e↵ective FPZ length can be cal-

culated: one has Gf = 73.7 N/mm, cf = 1.81 mm, for uniform displacement BCs; and

Gf = 130 N/mm, cf = 4.07 mm for uniformly applied remote stress. Clearly, the boundary

conditions have a non-negligible e↵ect which requires further investigation carried out here-

inafter through a combined approach integrating numerical analysis and DIC measurements.

4.3. Calibration of computational models through size e↵ect tests

Intra-laminar size e↵ect is a key factor for damage tolerance design of large textile com-

posite structures, the assessment of which requires accurate fracture models. These models

ought to be able to capture the size e↵ect, so that the tests described in the foregoing sections

could be used to provide data for calibration and validation. To clarify this point, the size

e↵ect tests were simulated by means of two recently proposed models for textile compos-

ites, namely the Spectral Sti↵ness Microplane Model (SSMM) [9] and the Microplane Triad

Model (MTM) [10, 11] for which the calibrated parameters are listed in Appendix.
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4.3.1. Microplane modeling of textile composites

In the formulations used in this investigation, the constitutive laws are expressed in

terms of stress and strain vectors acting on planes of several orientations within the material

meso-structure, following the framework of microplane theory [24–26]. Then, a variational

principle is applied to relate the microplane stresses at the mesoscale to the continuum tensors

at the macroscale. Thanks to these features, the models can easily capture various physical

inelastic phenomena typical of fiber and textile composites such as matrix microcracking,

micro-delamination, crack bridging, pullout, and debonding (for more details, refer to [9–

11]).

To ensure objective numerical results in the presence of strain localization, both formu-

lations employ the crack band model proposed by Bažant et al. [23]. In this approach, the

width of the damage localization band, wc, is considered as a material property. This width

is also equal to the mesh size, he, which is here chosen as 2 mm. A change in the element size

requires the scaling of the post-peak response of the material such that the fracture energy

remain unchanged. Thanks to the crack band model, a characteristic size of the material

is inherently embedded in the formulations, which is a key feature to correctly describe the

transition from ductile to brittle behavior.

It is worth mentioning here that the post-peak responses of the present microplane for-

mulations are somewhat di↵erent. In SSMM, the softening in weft or warp direction occurs

in the form of an exponential decay whereas, in MTM, the first initial drop in stress is con-

sidered to be followed by a small plateau, and then by an exponential decay. In the latter

case, the initial drop captures the assumed initial straightening of the fibers after matrix

microcracking. In the absence of direct experimental observations on the softening response

of composite materials, both types of post-peak behavior were considered in this contribu-

tion. However, both softening laws can be characterized by the initial fracture energy, Gf ,

and the total fracture energy, GF as depicted in Figure 6a,b. The total fracture energy, GF ,

corresponds to the total area under the stress-strain curve multiplied by the characteristic

size (or width) of the crack band whereas the initial fracture energy, Gf , is related only

to the initial part of the curve. It is worth observing that for common specimen sizes, the

size e↵ect tests provide information only on the initial fracture energy. This is because, for

lab-scale structures of quasibrittle materials, the stress at peak load in the FPZ still remains

in the initial steep portion of the post-peak stress-displacement curve, while the tail portion
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is reached only after the load is reduced substantially [27, 28].

4.3.2. Simulation of size e↵ect tests

Finite element models for all three SENT coupons were built in Abaqus Explicit [20] and

uniaxial tensile simulations were performed to fit the peak loads. For all the considered sizes,

the displacement field measured during the tests by DIC was applied as boundary conditions

in finite element simulations. For this purpose, the relative displacement with respect to the

left side of the specimens; i.e. the side that contains the crack mouth, was computed along

two sections at the top and bottom of the crack plane at a distance of D/2 for each specimen

of each size. This distance was chosen far enough from the crack plane to avoid the need for

any assumption on the applied boundary conditions. Afterwards, the displacement di↵erence

between top and bottom points was calculated through the normalized experimental time

and the average values for each size were obtained and applied on top of the numerical

specimens. Figure 5b illustrates the applied boundary condition for the largest specimen at

five di↵erent average loads P .

The crack band width he used in the simulations was 2 mm whereas a very fine seed

spacing of 0.2 mm had to be used in the direction of crack growth, to capture correctly

the stress profile in the ligament. The fracture energy that was indirectly measured from

size e↵ect tests was incorporated in the models by calibrating the material point response.

Namely, the post-peak response of the two models was calibrated to dissipate approximately

the initial fracture energy measured by size e↵ect tests with imposed remote displacements,

with Gf = 74.2 N/mm for the SSMM and Gf = 72.1 N/mm for the MTM.

Table 4 reports, for the coupons of di↵erent size, a comparison between the predicted and

measured structural strengths. It can be seen that, for both models, predictions agree very

well with experiments. Needless to say that had the models been calibrated with the initial

fracture obtained by applied remote stresses, the peak loads would be greatly overestimated.

4.4. Importance of size e↵ect in crashworthiness applications

To clarify the importance of measuring Gf accurately and modeling the fracturing of

textile composites correctly, the microplane formulations were used to predict the energy

absorbed during the impact of composite crash cans, a situation in which intra-laminar

fracture was reported to be the main failure mechanisms. Figure (7c) shows the geometry

of the structure under study consisting of a hat section tube and a reinforcing plate glued
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together by a toughened epoxy glue. The lay-up configuration was [0�]
11

for the hat section

tube and [0�]
8

for the plate. The composite tubes, accurately fixed at the bottom, were

impacted by a flat mass of 74.4 kg at the velocity of 4.6 m/s in a drop tower.

The crush can was modeled in Abaqus Explicit [20] using a mesh of triangular shell el-

ements of 2 mm (see Figure (7d)). All the degrees of freedom of the nodes at the bottom

section were fixed while an initial velocity field of 4.6 m/s was prescribed to the impacting

mass consisting of rigid shell elements. The general contact algorithm provided by Abaqus

Explicit [20] was used while element deletion was adopted to avoid excessive element dis-

tortion during the simulation. The elements were deleted as soon as the dissipated energy

in tension reached 99% of the fracture energy or when the magnitude of the maximum or

minimum principal strains reached 0.45.

The comparison between experimental and numerical results is reported in Table 5 in

terms of plateau reaction force on the plate. As can be noted, a very satisfactory agreement is

found for both formulations using the fracture energy estimated from size e↵ect. As the table

shows, the experimental plateau load, i.e. the reaction force on the plate once the crushing

process is stabilized, is 35.6 kN whereas the predicted values are 33.8 kN for SSMM and 32.7

for the MTM. It should be highlighted here that these results represent a pure prediction

based on the calibration and validation through uniaxial tests as well as size e↵ect tests only.

No adjustment of any of the parameters of the models was done, making the reported results

even more remarkable.

Then, to study the importance of Gf on the crashing predictions, simulations were done

for the following additional cases: Case 2: fracture energy approximately half of the measured

value, and Case 3: fracture energy corresponding to an almost vertical drop in stress after

the peak (equal to about 12 N/mm assuming 2 mm as element size). Since, in the latter case,

also the shape of the post-peak is predefined, no di↵erence between the two formulations

was expected and the simulation was run only with the Spectral Sti↵ness Microplane Model

(Figure 6c reports examples of the stress-strain curves for SSMM for all cases). As can be

noted from Table 5 and Figures 7a,b, the simulations revealed a huge e↵ect of the fracture

energy for both models. In facts, a decrease of the initial fracture energy to about 50%,

Case 2, diminished the crushing load to almost a half. Case 3, typical of strength-based

constitutive laws implemented in most commercial Finite Element codes, resulted into an

underestimation of the crushing load of the order of 70% for an element size of 2 mm. It is
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worth remarking that, assuming the stress always drops vertically after the peak, inevitably

makes the fracture energy dependent on the element size. Accordingly, the error in Case 3 is

mesh dependent and the predicted load decreases with decreasing element size and increases

for increasing element size.

5. Conclusions

This paper presents and discusses an experimental and numerical investigation on the

intra-laminar size e↵ect of textile composites. Based on the results presented in this study,

the following conclusions can be formulated:

1. The experimental investigation shows a remarkable size e↵ect in geometrically-scaled

textile composite structures failing by intra-laminar fracture propagation. This aspect,

too often overlooked in the literature on composites, is the determining factor for

damage tolerance design of large composite structures;

2. The tests agree with Size E↵ect Law (SEL) proposed by Bažant [4, 24], according

to which the fracturing behavior of geometrically scaled structures exhibits a smooth

transition from ductile to purely brittle (LEFM type) with increasing structure size;

3. Size e↵ect tests can be used to determine the fracture characteristics of the composite

provided that a) the orthotropic properties of the material are taken into account and

b) realistic boundary conditions are assumed for the calculation of the dimensionless

energy release rate. The size e↵ect method of measuring the fracture properties is

easier to implement than other methods because only peak load measurements are

necessary: the post-peak behavior, crack tip displacement measurement and optical

measurement of crack tip location are not needed, and even a soft testing machine

without servo-control can be used. According to this approach, the initial fracture

energy Gf of the investigated carbon twill 2x2 composite was identified to be 73.7

N/mm whereas the e↵ective Fracture Process Zone (FPZ) length, cf was 1.81 mm.

This length is comparable to the size of one tow;

4. The applicability of SEL to measure the fracture properties of the material was ver-

ified numerically by means of two recently proposed microplane models for textile

composites [9–11]. Both formulations matched the size e↵ect data using the Gf -value

estimated by SEL;
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5. Compared to the experimental results on the axial progressive crushing behavior of

composite crush cans, the models calibrated with the measured fracture energy pro-

vided an excellent prediction of the crushing load. Further, a parametric study showed

that, for both models, a decrease of Gf to about 50% of the measured value can reduce

the crushing load to almost a half. The assumption of a vertical drop of the stress after

the peak, typical of strength-based constitutive laws, resulted into an underestimation

of the order of 70% for an element size of 2 mm. The error in this latter case is mesh

dependent;

6. The foregoing results suggest that measuring accurately Gf and modeling correctly

the fracturing of textile composites, including their quasi-brittleness, is the key in all

situations which require accurate prediction of energy absorption (such as crashwor-

thiness analysis) or scaling of mechanical properties. This can be accomplished neither

by strength-based approaches, which completely neglect the size e↵ect, nor by LEFM,

which does not account for the finiteness of the FPZ.
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Appendix

Table 6 and Table 7 present the calibrated parameters for Spectral Sti↵ness Microplane

Model (SSMM) and Microplane Triad Model (MTM), respectively according to Refs. [9–11].

Description Symbol (units) Measured value

Fiber volume fraction Vf (-) 0.54

Laminate thickness t (mm) 1.9

In-plane modulus E=E
1

=E
2

(GPa) 53.5

In-plane shear modulus G = G
12

(GPa) 4.5

In-plane Poisson ratio ⌫ =⌫
12

= ⌫
32

(-) 0.055

In-plane tensile strength in direction 1 and 2 F
1t = F

2t (MPa) 598

Table 1: Properties of carbon twill 2x2/epoxy composite
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Size Width, Gauge length, Length, Crack length, Thickness,

D L L = L+ 2Lt a
0

t

Small 20 44.5 120.5 4 1.9

Medium 40 89.0 165.0 8 1.9

Large 80 178.0 254.0 16 1.9

Units: mm. Tab length Lt = 38 mm for all investigated sizes.

Table 2: Geometrical specifications of the SENT specimens under study

Specimen gauge length, Specimen width, Max, load Nominal strength

L (mm) D (mm) Pmax (kN) �N (MPa)

44.5 20

13.17 350.27

12.67 336.81

13.42 356.91

89.0 40

16.58 220.48

18.69 248.54

19.83 263.70

178.0 80

30.17 200.60

29.60 190.81

29.65 197.14

Table 3: Results of tensile tests on Single End Notched Specimens.
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Size Width (mm)
Structural strength, �N (MPa)

Experiments SSMM [9] MTM [11]

Small 20 348.0 ±10.2 345.2 345.6

Medium 40 224.2 ±21.9 255.5 258.8

Large 80 196.2 ±5.0 199.3 198.1

Table 4: Comparison between experimental and predicted nominal strength of the SENT specimens under inves-

tigation.

Description (units) Exp. case #
SSMM [9] MTM [11]

value �% value �%

Plateau load (kN) 35.6

1 33.8 5.06 32.7 8.15

2 20.2 43.26 20.9 41.29

3 9.0 74.72 / /

Table 5: Experimental and predicted plateau crushing load for various value of the initial fracture energy. Case

1: G(1)
f = 73.7 N/mm (as estimated by SEL, Eq. (8)); Case 2: G(2)

f ⇡ 1/2 G(1)
f ; Case 3: G(3)

f ⇡ 12 N/mm

(corresponding to almost vertical drop in stress after peak).
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Mode Description Symbol (units) Calibrated value

12

mode 1 elastic eigenvalue �(1) (GPa) 61.85

mode 2 elastic eigenvalue �(2) (GPa) 50.71

microplane peak stress in tension s
(12)

0

(MPa) 400

parameter governing post-peak softening in tension k
(12)

bt (-) 30.60⇥ 10�3

parameter governing post-peak softening in tension a
12t (-) 0.75

microplane peak stress in compression c
(12)

0

(MPa) 405

parameter governing post-peak softening in compression k
(12)

bc (-) 30.60⇥ 10�3

parameter governing post-peak softening in compression ac12 (-) 0.75

4

mode 4 elastic eigenvalue �(4) (GPa) 8.10

microplane stress in tension at start of non-linear boundary s
(4)

0

(MPa) 45

exponent governing pre-peak non-linearity in tension and compression p (-) 0.3

strain at starting of post-peak softening in tension k
(4)

at (-) 124.6⇥ 10�3

parameter governing post-peak softening in tension k
(4)

bt (-) 120.15⇥ 10�3

microplane stress in compression at start of non-linear boundary c
(4)

0

(MPa) 45

strain at starting of post-peak softening in compression k
(4)

ac (-) 124.6⇥ 10�3

parameter governing post-peak softening in compression k
(4)

bc (-) 120.15⇥ 10�3

3

mode 3 elastic eigenvalue �(3) (GPa) 10.82

microplane peak stress in tension s
(3)

0

(MPa) 90

strain at starting of post-peak softening in tension k
(3)

at (-) 4.0⇥ 10�3

parameter governing post-peak softening in tension k
(3)

bt (-) 20⇥ 10�3

microplane peak stress in compression c
(3)

0

(MPa) 90

strain at starting of post-peak softening in compression k
(3)

ac (-) 4.0⇥ 10�3

parameter governing post-peak softening in compression k
(3)

bc (-) 20⇥ 10�3

5

mode 5 elastic eigenvalue �(5) (GPa) 7.20

microplane stress in tension at start of non-linear boundary s
(5)

0

(MPa) 45

exponent governing pre-peak non-linearity in tension and compression p (-) 0.3

strain at starting of post-peak softening in tension k
(5)

at (-) 124.6⇥ 10�3

parameter governing post-peak softening in tension k
(5)

bt (-) 120.15⇥ 10�3

microplane stress in compression at start of non-linear boundary c
(5)

0

(MPa) 45

strain at starting of post-peak softening in compression k
(5)

ac (-) 124.6⇥ 10�3

parameter governing post-peak softening in compression k
(5)

bc (-) 120.15⇥ 10�3

Table 6: Calibrated parameters of Spectral Sti↵ness Microplane Model (SSMM).
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Description Symbol (units) Calibrated value

axial and transverse modulus for matrix Em(GPa) 3.5

axial modulus for fiber Ef
1

0(GPa) 190

axial modulus for yarn Ey
1

0(GPa) 134

transverse modulus for fiber Ef
2

0 = Ef
3

0(GPa) 40

transverse modulus for yarn Ey
2

0 = Ey
3

0(GPa) 9.69

shear modulus for matrix Gm(GPa) 1.7

in-plane shear modulus for fiber Gf
1

0
2

0 = Gf
1

0
3

0(GPa) 24

in-plane shear modulus for yarn Gy
1

0
2

0 = Gy
1

0
3

0(GPa) 5.68

out-plane shear modulus for fiber Gf
2

0
3

0(GPa) 14.3

out-plane shear modulus for yarn Gy
2

0
3

0(GPa) 3.57

Poisson’s ratio for matrix ⌫m 0.35

in-plane Poisson’s ratio for fiber ⌫f
1

0
2

0 = ⌫f
1

0
3

0 0.26

in-plane Poisson’s ratio for yarn ⌫y
1

0
2

0 = ⌫y
1

0
3

0 0.287

out-plane Poisson’s ratio for fiber ⌫f
2

0
3

0 0.49

out-plane Poisson’s ratio for yarn ⌫y
2

0
3

0 0.448

microplane normal strain at which initial drop in load occurs (T) "f0N 0.0109

microplane normal strain at which initial drop in load occurs (C) "f0cN 0.011227

microplane normal strain at which progressive softening begins ✏f1N 0.014933

parameter governing the sharpness of the initial drop in stress R 0.6216

parameter governing the shape of the progressive fiber damage R
1

0.0082

parameter governing the shape of the progressive fiber damage R
2

160,000

parameter governing the shape of the progressive fiber damage q 4.25

e↵ective strain at which pre-peak non-linearity begins in the matrix "m0 0.007

e↵ective strain at peak load in the matrix "mc 0.22

parameter governing the shape of the non-linear arm H 92.1

parameter governing the shape of the non-linear arm n 0.5714

e↵ective strain at complete failure in the matrix "mf 0.35

Table 7: Calibrated parameters of Microplane Triad Model (MTM).
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Figure 1: Geometry of Single Edge Notch Tension (SENT) specimens under study. Units: mm.
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Figure 2: Geometry of the notch (scaled for each size) and schematic of the Representative Unit Cell of the twill

2x2 composites under study.
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showing decreasing nonlinearity increasing specimen dimensions. Typical failure patterns of Single Edge Notched

specimens for width b) D = 20 mm, c) D = 40 mm and d) D = 80 mm. e) Magnification of fracture surface for

the large size specimen showing extensive tow failure and pull-out.
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Figure 4: Size e↵ect study. a) Linear regression analysis to characterize the size e↵ect parameters. b) Measured

size e↵ect for [0�]8 twill 2x2 laminates.

21



X = ,

0.19 0.195 0.2 0.205 0.21

Y
=

g
(,

)

0.63

0.64

0.65

0.66

0.67

0.68

FEA

R2 = 0.9999 

 Y= 2.8352 X + 0.0886 

a) b) 

0 20 40 60 80
0

0.2

0.4

0.6

0.8

Distance [mm]

D
isp

la
ce

m
en

t [
m

m
]

 

 
P =7.7 kN
P =14.0 kN
P =20.1 kN
P =25.4 kN
P =29.8 kN
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Figure 6: a) Typical stress-strain curve in pure tension for the Spectral Sti↵ness Microplane Model [9]. The

initial fracture energy Gf is calibrated adjusting the post-peak softening response of the material. b) Typical

stress-strain curves in tension provided by [9] for di↵erent values of the initial fracture energy: 1) Gf = 73.7

N/mm, 2) Gf = 46.1 N/mm and 3) Gf = 12.0 N/mm (corresponding to almost vertical drop of stress after the

peak).
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Figure 7: Crashing of composite tubes. (hat section: [0�]11, plate: [0�]8). a) Crashing load vs time predicted

by Spectral Sti↵ness Microplane Model [9] for various values of intra-laminar fracture energy, Gf ; b) Crashing

load vs time predicted by Microplane Triad Model [10, 11] for various values of intra-laminar fracture energy, Gf ;

c) geometric specifications of the crash can cross-section (dimensions in mm); d) Typical FE mesh used in the

simulations.
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