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Abstract  

This paper presents a critical comparison of the existing code provisions for shear strength of 

concrete beams. The comparison is based on the interpretation of the available multivariate database 

on shear strength, the examination of the predicted size effects on shear strength and their 

underlying hypotheses, and the results of recent high-fidelity numerical simulations of shear failure. 

In addition to examining the existing models, the present comparison also provides several key 

considerations for testing the scientific soundness of any model of shear failure of concrete beams, 

which is necessary for future revisions of the design code provisions. 
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1 Introduction 

Among the design codes of three major engineering societies, including ACI, fib and JSCE 

[1][2][3], JSCE was in the early 1980s the first to introduce for shear strength of beams a size 

effect, albeit of a statistical form known today as inapplicable. CEB, the predecessor of fib, 

was the first to recognize that the size effect was not statistical, but the empirical form 

introduced is known today as unrealistic. ACI remains the only society that does not yet take 

the size effect on the shear strength of concrete beams into account.   Yet ACI is also the only 

one among the three that does not have in its code a size effect that is questionable from 

today’s perspective, and thus has a chance to be the first society to introduce a scientifically 

sound form (note, though, that all the three societies have already introduced the size effect, 

and one of the correct form, into the specifications for anchor pullout[1][2][4][5], which is 

essentially a shear failure). 

 The size effect is a general property of failure of all quasibrittle materials [6][7][8][9], 

among which concrete is an archetypical case. Currently, a debate about introducing the size 

effect into the specifications of ACI-318 design code [1] for the shear strength of reinforced 

and prestressed concrete beams is under way in committees ACI-445 and ACI-446. A similar 

debate about the Model Code has been initiated at the fib Congress in Prague in 2011[10]. 

The question in all societies no longer is whether the size effect should be taken into account, 

but what is the proper form of size effect to adopt. The aim of this brief paper is to aid this 

debate by explaining and critically comparing the main options and the methods of their 

evaluation. 

2 Extracting Statistical Evidence from a Biased Heteroscedastic Database 

Fig. 1 shows the newly-compiled database (ACI-445d/DAfStb), an expansion of the 

previous ACI 445F database [11]. The shear strength vc contributed by the concrete is 

plotted versus beam depth d in a double logarithmic plot. Each point represents one 

 



laboratory test of a reinforced concrete beam without stirrups that failed due to shear. 

Highly scattered though the data are, they nevertheless show a downward trend. This 

trend tempted some engineers in ACI-445D to pass a regression line, which happens to 

have in the log-log plot the slope of about −1/3 and thus gives a size effect factor of the 

type θ = (d/d0)−1/3, where d = beam depth (measured from the top face to the 

longitudinal steel centroid) and d0  = constant. 

 
 
Fig. 1. Expanded ACI-445F database of 784 shear beam tests and various size effect 
asymptotes. 

 However, such a simplistic regression analysis is incorrect. One reason is that, 

inevitably, the database available is heavily biased statistically. The collected data points 

do not cover the size range uniformly (i.e., the database is not homoscedastic). In the 

existing database, plotted in Fig. 2, 87% of data points pertain to beam depth d < 508 

mm (20 in.) and 97% to beam depth d < 1.27 m (50 in.), while nowadays the 

outriggers of tall buildings have the depth of about 6 m (19.7 ft.) and bridge girder in 

Palau, which collapsed by shear with compression, had the depth of 14.2 m (46 ft.) 

[12][13]. 

 



 
Fig. 2. Histogram of number of beams tested versus beam depth in inches. 

Another source of bias, in fact a major one, is a simultaneous variation of the 

means of steel ratio ρw, shear span ratio a/d and other secondary variables as d 

increases. This is due to the fact that the database has not been (and could not have 

been) generated according to a proper statistical sampling scheme. E.g., if the size 

range is subdivided into several intervals of constant width in logarithmic scale (five in 

Fig. 3), the averages of steel ratio ρw and shear span ratio a/d (as well as of concrete 

strength cf ′  and maximum aggregate size da), calculated separately for each size interval, 

should be about the same for all the size intervals [14]. But, as seen in Fig. 3 (top), both 

the averages of ρw and a/d in the subsequent size intervals decrease with increasing size. 

For ρw, they decrease by an order of magnitude, and for a/d by about 30% (as it 

happened, the testers chose for large beams generally a smaller ρw and a smaller a/d 

than they did for small beams). Same kind of statistical bias is found for cf ′  and da; see 

Fig. 3 (bottom) (in which a/d = M/V d where M, V = bending moment and shear force at 

the shear critical cross section, respectively). 

 



 

Fig. 3. Variation of secondary parameters in different size intervals: a) longitudinal steel ratio 
ρw ; b) shear span ratio a/d; c) concrete strength; and d) maximum aggregate size da. 

2.1 Filtering of Database to Remove Bias in Secondary Variables 

 In previous work [14], a computer program was developed to delete gradually, in 

an unbiased way (without human intervention), the extreme points in each size interval, so as 

to achieve a nearly uniform variation of the secondary parameters throughout the size 

intervals. This program deletes outlier points one by one, selecting each point deletion 

candidate so as to achieve the greatest possible reduction of the variance of the averages in all 

the intervals. Here this program is used to handle the enlarged database of over 700 data 

points. In a database filtered in this way, with the number of points reduced by computer 

filtering, shows the values of average 

 

ρ w , 

 

a /d , and 

 

d a  to be almost uniform throughout 

the size intervals. Over ten unbiased filtered databases were generated by the computer, 

with different sets of averages 

 

ρ w , 

 

a /d , and 

 

d a , and with different sets of undeleted 

points. To save space, Fig. 4 shows only 6 of them, along with the corresponding 

regressions of optimum fit of the average values of shear strength (circles) of the 

remaining data points (crosses) in each size interval. The trend is seen to be very 

 



different from the regression of the unfiltered database in Fig. 1. The averages of the 

data in the size intervals now agree closely with the ACI-446 size effect formula, which 

terminates with the size effect factor 

0
LEFM

d
d

θ ≈  (1) 

where d0  is a constant for geometrically similar beams. This size effect factor is 

characteristic of fracture mechanics of sharp cracks (i.e., linear elastic fracture 

mechanics, or LEFM). In the log-log plot, the terminal slope is −1/2; see Fig. 4. Further 

note that if the average of data in each interval is taken with the same weight, the bias 

due to unequal numbers of data points in subsequent intervals also gets eliminated. 

 
Fig. 4. Data filtering to achieve uniform distribution of secondary parameters throughout size 
intervals and the fitting based on the mean values of remaining test points. 

2.2 Evidence from Weighted Multivariate Regression of Complete Database 

 Another way to cope with the database bias (or heteroscedasticity) is to attach 

to the data points weights inversely proportional to the data density in transformed 

variables (i.e., in log d), and then use multivariate nonlinear optimization of the data 

fits. This can be done by a standard computer subroutine, such as the Levenberg-

 



Marquardt algorithm, which optimizes all the variables simultaneously [15][16], and also 

delivers the coefficients of variation of the optimized parameters. This is a standard 

procedure for dealing with a heteroscedastic data set [17], which is the case here.  

The bias due to size dependence of data density can be characterized by the 

numbers, Ni , of data points in the subsequent size intervals, which are here found to   

decrease sharply with increasing size d. If this bias were ignored, the resulting 

optimum fit of data would be dominated by small beams, particularly those with d < 

508 mm (20 in.), while the data for beams with d > 1.27 m (50 in.) would have hardly 

any effect on the optimum fit. This statistical bias must be countered by attaching 

weights to the data points. 

 

Fig. 5. Fitting of the expanded ACI-445D database of 784 weighted points . 

To this end, one needs to subdivide the log d  scale into several equal size 

intervals i = 1, 2, ...ni, then count the number Ni of the data points in each size interval, 

and finally apply to all the data points in interval i the weight 1/Ni  [15][16] (similarly, 

further weights could be attached to the data points in multi-dimensional boxes in the 

space of all secondary variables, to counter the nonuniformity of the number of points in 

 



the boxes). An optimum fit of the shear database obtained in this manner is shown in 

Fig. 5, in which the solid curve is the optimum fit by the formula of ACI committee 446 

and the areas of the circular data points are proportional to their weights, for better 

visualization. 

Normally, multivariate regression with proper weighting would be sufficient to analyze the 

database. However, to succeed, the form of the dependence of vc on concrete strength and the 

composition parameters of concrete beam would have to be known well. Unfortunately, it is 

not. This is why the creation of filtered unbiased subsets of the database is useful. 

3 Load Capacity in Shear 

In elasticity with strength limit as well as plastic limit analysis, the characteristic (or 

nominal) stress at maximum load (or at failure under load control), the nominal strength 

(e.g., vu in the case of beam shear), is independent of the structure size, d, when 

geometrically similar situations are compared. The dependence of this strength on the 

structure size, d, cannot be captured by elasticity or plasticity and came to be called the 

size effect. Since the shear force Vu  carried at maximum load by the concrete is (at 

constant beam width) proportional to vud, Vu increases linearly with the structure size 

when the size effect is absent, but slower than linearly when it is present (for example, 

such size effect has long been embodied in the ACI specifications for anchor pullout 

[1][4][5]). 

Fig. 6 shows four plots of Vu  versus beam depth d, corresponding to the ACI code 

(ACI-318-14 [1]), to Model Code 2010 of fib [2], to the code of JSCE (Japan Society of 

Civil Engineers) [3],  and to the  2007 code  proposal of  ACI Committee  446 [18]. For 

comparison, all the curves are scaled to the same initial slope. All the asymptotic size 

effects on Vu are power laws of d, as indicated in the figure, and the size effect formulas 

are also listed. The differences among the size effect curves are certainly striking and are 

 



discussed next. 

 
Fig. 6. Comparison of the load capacity asymptotes based on different size effects. 

3.1 Size effect of JSCE 

Consider first the JSCE curve. The JSCE was the first society to introduce the size effect 

into its design code in the early 1980s, based on the vision of H. Okamura [19][20]. It 

was a revolutionary step. Even though the JSCE formula for size effect is today known not 

to be the correct one, it nevertheless provides significantly better structural safety than 

ignoring the size effect altogether. Of course, in the early 1980s, JSCE could not introduce a 

better formula because the quasibrittle fracture mechanics, required for concrete, had not 

yet been developed. The only size effect theory that existed in the early 1980s was the 

Weibull statistical theory [21], according to which 

0u JSCEv v θ= , 

  0
n

JSCE
d
d

θ  =  
 

. 
(2) 

where d0 = experimental constant for beams of similar shape. Based on some experiments 

for Weibull theory prior to 1980, exponent n was thought to be about 1/4 for concrete, 

although based on the current calibration of Weibull theory for concrete, n should be 

about 1/12. 

Today, however, it is clear that the Weibull statistics, implied by the JSCE, 

 



does not apply to beam shear, and so the JSCE size effect has no valid theoretical 

foundation. Applicability of the Weibull size effect rests on the weakest-link model, 

which assumes the existence of many material elements (or representative volume 

elements, RVEs) such that the failure of only one of them triggers failure of the whole 

structure. The larger the structure, the more failure-triggering elements exist, and since 

the material strength is a random field, the strength of the weakest element decreases 

with the number of elements, and thus also with the structure size. 

Such a situation exists in some unreinforced concrete structures, e.g., arch 

dams, but not in the shear failure of beams. The reason is that the location of the 

point of failure initiation is predetermined by mechanics. The failure initiates at the 

tip of a long diagonal shear crack that forms before the maximum load. The relative 

location of this tip is almost fixed by mechanics, which dictates the crack path, and is 

about the same regardless of structure size. This fact was established by finite element 

fracture analysis and is confirmed by many experiments. The best experimental 

confirmation is furnished by the crack paths in Fig. 7 recently observed in geometrically 

scaled tests of beams of very different sizes [22]. Therefore, the randomness of material 

strength cannot be the cause of size effect on the mean shear strength (although it 

surely affects the scatter). 

 
Fig. 7. Similarity of crack pattern documented in scaled beams of different sizes. 

 

 



3.2 Size effect of fib Model Code 2010 

Another kind of size effect curve was introduced into the fib Model Code (MC) 2010 

[2]. It replaced an earlier purely empirical curve introduced in 1990 into the CEB Code. 

The MC size effect curve has the form 

0u MCv v θ= , 

  
0

1
1 /MC d d

θ =
+

. 
(3) 

where v0 and d0 are constants, and θMC = size effect factor of fib MC 2010. The size 

dependence of θMC is plotted in Fig. 6. This curve gives the extreme size effect among all 

the formulae proposed so far. 

 The MC size effect factor, Eq. (3), is not correct. This may be, for example, 

simply demonstrated by the asymptote of the curve of Vu = bwdvu versus d (here bw is 

beam width).  In contrast to all the other size effect curves, this asymptote is horizontal, 

featuring the only upper bound on Vu among all the size effect curves proposed so far. 

Thus, if a beam is sufficiently deep, the doubling of its depth, for example, would not 

cause any increase of load capacity.  This feature obviously defies common engineering 

sense.  A change in the Model Code 2010 is inevitable.  

Why has this serious problem with Model Code 2010 been overlooked? This is 

probably due to two reasons: 1) the size effect has normally been plotted as the 

dependence of vu rather than Vu on size d; and 2) the plot of vu versus d has habitually 

been presented in the linear (rather than logarithmic) scale of d, which does not reveal 

the asymptotic behavior and cannot show the quality of fit outside a narrow central 

range of sizes.  

The size effect suggested by Model Code 2010 was conceived as a generalization 

of the so-called modified compression field theory (MCFT) which gives v0. This theory 

 



works well for small beams, d < 254 mm or 10 in., for which the size effect is negligible 

(θMC ≈1), and is acceptable for d < 508 mm or 20 in. 

But why, for larger beams, the generalization of MCFT led to an incorrect size 

effect? — Because the generalization rested on the following unrealistic hypotheses [16]:  

1. The first hypothesis was that what controlled the size effect was the 

spacing se of multiple parallel diagonal shear cracks. However, these cracks 

do not control failure; they form at crack initiation, well before reaching the 

maximum load and before localizing into one dominant diagonal crack. 

2. The second was a softening law for the parallel diagonal cracks [23] , 

which was chosen arbitrarily, in disregard of the amply verified softening 

stress-separation law for concrete fracture. 

3. The third hypothesis was that the stress transmission across the diagonal 

shear cracks determines the shear load capacity due to concrete, in the 

manner pictured in Fig. 8a. But later finite element failure analysis [16], 

based on a realistic triaxial constitutive model for damage in concrete (the 

microplane model), contradicted this hypothesis. It revealed that the stress 

transmission across the diagonal crack has, for large beams, a minor role at 

best. More specifically, it revealed that: 

(a) The uniformity of distribution of the aggregate interlock stresses along 

the diagonal shear crack, implied in the MCFT generalization, is true 

only for very small beams (d < 254 mm or 10 in.). For large beams, 

these stresses localize while the localized peak travels along the 

diagonal crack as the crack is being opened under increasing load (Fig. 

8b); 

(b) The stresses transmitted across the diagonal crack at maximum load 

 



contribute in small beams about 40% of the shear force Vc carried by 

concrete, and in deep beams only a negligible fraction of Vc—only 23% 

of Vc in the beam 1.89 m (74.4 in.) deep tested in Toronto [16]). The 

contribution gets still smaller for larger beams. 

(c) Most of the shear force due to concrete at maximum load is carried by an 

(imagined) inclined compression strut above the diagonal crack, loaded 

by inclined compression stresses transmitted across the ligament above 

the tip of the diagonal crack (Fig. 8c) 

 
Fig. 8: a) Interlock stress distribution assumed in MCFT; b) localization of bridging 
stress as diagonal cracks propagate; and c) shear stress transmitted through the inclined 
compression strut. 

3.3 Roles of Stresses across Main Diagonal Shear Crack and along Compression Strut 

Figs. 9 and 10 show comparisons of Eq. 7  with the main published data on the size 

effect on the shear strength due to concrete in reinforced concrete beams without 

stirrups [24][25][26]. The optimum values of D0 = d0 are indicated and the best fits by other 

size effect curves are shown (note that, for beams with stirrups, the optimum values of d0 

obtained from individual size effect tests are, according to a recent study [27], about 

 



ten-times larger, which pushes the size effect into extremely deep beams). These data 

have been used to calibrate a finite element program featuring microplane model M7 for 

concrete, an advanced and realistic constitutive law for fracturing and damage in 

concrete (which is embedded in commercial software ATENA). It has been implemented 

in user’s subroutine UMAT of ABAQUS, and then used to check some assumptions. 

 
Fig. 9. Size effect tests of beam shear conducted at Northwestern University and the 
fittings based on different size effects. 

 
Fig. 10. Size effect tests of beam shear conducted at the University of Toronto and the 
fittings based on different size effects. 

 For example, Fig. 11 shows the stress distributions calculated for small and large 

beams very similar to those tested at University of Toronto. They confirm that in small 

beams the compression strength of concrete at maximum load gets mobilized 

 



throughout the whole ligament above the tip of the main diagonal crack while, in large 

beams, the stress gets localized into only a part of that ligament. This provides a simple 

explanation of the size effect. Also, in Fig. 10, the program with Model M7, 

calibrated by the Toronto tests for five beam sizes, is used to compute an additional, 

6th,  point for a beam of depth 5 m, as shown in Fig. 10. Note that this calculated 

point agrees well with the terminal slope of −1/2 of the ACI-446 size effect at the large-

size limit, Eq. 7, and disproves the terminal slope −1 of the large size asymptote 

implied by Model Code 2010. 

 
Fig. 11. Stress distributions at Vmax along the ligament above the primary crack tip in 
small and large beams. 

4 ACI-446 Size Effect Indicated by Dimensional Analysis and Energy Balance 

This size effect, equation c) in Fig. 6, was unanimously endorsed in 2007 by ACI 

committee 446, Fracture Mechanics. It is deterministic and is caused by the release of 

strain energy of the structure during failure (as thus it is also called the energetic size 

effect). It has been derived as a general consequence of fracture mechanics of 

quasibrittle materials for failures, called Type 2 failures, in which the maximum load is 

reached only after long stable crack growth [7] (Type 1 failures, which are those 

occurring right at crack initiation, exhibit a different type of size effect). The Type 2 

failures are typical not only of reinforced concrete, but also of sea ice, fiber composites, 

tough ceramics, wood, rigid foams, rock masses, and all other quasibrittle materials. 

 



These are brittle heterogenous materials in which the inhomogeneity size and the fracture 

process zone size are not negligible compared to the structure dimensions in engineering 

applications. This is a salient characteristic of concrete structures and, in particular, of 

beam shear. 

 The simplest, yet general, derivation of the size effect in quasibrittle fracture can 

be based on dimensional analysis and energy balance [6]. The total release of 

(complementary) strain energy W caused by fracture is a function of both: 1) The length 

a of the fracture (or crack band) at maximum load, and 2) the area of the zone damaged 

by fracturing, which is wca where wc= nda = material constant = width of the crack band 

swept by the fracture process zone width during the propagation of the main crack, and n 

= 2 to 3, depending on the relative stiffness and strength of aggregate pieces and mortar. 

Parameters a and wca are not dimensionless. But they can appear in the equation 

governing failure only in dimensionless form, which means that W can depend only on 

dimensionless parameters α1 = a/D and α2 = wca/D2, where D can be taken as either total 

beam depth h or as depth d from the compressive face to the reinforcement centroid. So 

the total strain energy release W must be written as 

2 2
1 2

1 ( ) ( , )
2

PW bD f
E bD

α α=  (4) 

where bw = beam width. In the case of geometrically similar beams of different sizes, f is 

a smooth function independent of D. The energy balance during crack propagation 

requires that ∂W/∂a = Gfb, where Gf = critical value of the energy release rate.  Noting 

that 

1 2

1 2

df f f
da a a

α α
α α

∂ ∂∂ ∂
= +

∂ ∂ ∂ ∂
 (5) 

 



where ∂α1/∂a = 1/D and ∂α2/∂a = wc/D2, and considering the first two linear terms of 

Taylor series expansion f (α1, α2) ≈ f(0, 0)+ f1α1 + f2α2  where f1 = ∂f/∂α1, f2 = ∂f/∂α2, 

one obtains the equation 

2
21

2 2
c

f
ff P G b

D D bE
ω + = 

 
 (6) 

After rearrangement, and with the notation vu = P/bwD = average (or nominal) shear 

strength due to concrete, Eq. 6 yields the deterministic (or energetic) size effect of ACI-

446: 

0uv v θ= , 

 
0

1
1 /D D

θ =
+

. 
(7) 

where D0 = wc f2/f1  = size-independent constant called the transitional structure 

size.  According to data fitting, D0 can be considered as a constant, D0 ≈200 mm (7.9 

in.). Factor θ represents for the ACI-446 size effect factor.  Furthermore, in terms of 

fracture energy, the derivation yields 22 /c f cv EG f w=  = size-independent constant = 

average shear strength of concrete for small size beams. The value of v0 is obtained by data 

fitting. Note that a basic assumption of the foregoing derivation is that, approximately, 

the cracks at maximum load must be geometrically similar. The recent tests of Syroka-

Korol and Tejchman [22] give an excellent confirmation of such similarity; see Fig. 7.  

Eq. 7 represents an approximate size effect law, which has been experimentally 

verified for many kinds of brittle failures of reinforced concrete structures, as well as 

fiber composites, tough ceramics, rocks, foams, sea ice, wood, etc. In 2007, ACI-446 

endorsed Eq. 7 for the shear capacity of concrete in failure of beams. 

Note that when D<<D0, there is virtually no size effect. Hence, the case of 

normal size laboratory beams (d ≈ 0.25 m) corresponds to plastic limit analysis, which 

 



implies no size effect.  For very large beams (i.e. d >> D0), Eq. 6 suggests that

1/N Dσ ∝ , Eq. 1, which gives a straight-line asymptote of slope −1/2 in the plot of 

log σN vs. log D.  This asymptote, which gives the size effect of geometrically similar 

sharp cracks according to linear elastic fracture mechanics (LEFM), is generally beyond 

the range of practical   applications. 

     Since the fracture energy is not relevant to the strength of very small beams (cca D ≤ 

0.25 m), vc should be evaluated by the best known method based on plastic limit 

analysis. The best choice of this method is not yet completely settled, but a point to 

note is that the size effect factor θ can be applied to the vc value calculated according 

to any such method (e.g., those of Frosch, Hsu or MCFT). For example, according to 

the latest calibration in ACI-446, V0 = 12 bw c  where f’c is in psi and V0 in lb.; bw = width 

of rectangular cross section or of the web. Based on the idea of Frosch and Wolf [28], c is the 

depth to neutral axis according to elastic analysis, i.e. , which 

replaces d used previously to calculate the shear force in concrete. This replacement has the 

advantage that it takes approximately into account the effect of axial force or prestress force 

(the flanges on the sides of web must be ignored in calculating c [28]).   

5 Meaningful and Misleading Statistical Evaluations from Large Database 

Encompassing Many Concretes and Labs 

Committees of concrete societies nowadays try to compare various models for beam shear 

by statistics of prediction errors compared to a large database representing a 

collection of strength tests of beams made of all kinds of concretes, tested in 

different labs. Meaningful comparisons, however, are a complex problem with different 

overlapping trends and many random variables of widely different magnitudes of 

scatter, while the database is drawn from separate studies that had to be conducted 

 



without any coordinated scientific sampling scheme. In this kind of problem, the 

statistical inferences are tricky and can easily lead to misleading conclusions. 

There has been a tendency to apply the statistics of data points to a problem that 

requires the statistics of trends, in our case the trend with respect to beam size 

(although the problem is the same for the trends with respect to shear span, steel ratio, 

etc.). What makes the comparisons particularly difficult is that (aside from relatively 

small experimental errors), random scatter types of very different magnitudes must be 

distinguished: 

1) Scatter due to differences among concretes; 

2) Scatter due to variation of beam size; 

3) Scatter due to variations in shear span, steel ratio, concrete strength, 

aggregate size, type of prestress if any, rate of loading, concrete age, etc. 

The scatter of type 1 happens to be an order of magnitude higher than the others 

and thus covers them up, including the statistical trend of the size effect factor. 

Furthermore, the fact the averages of a/d, ρw, etc. vary strongly through the subsequent 

size intervals, obfuscates the size effect trend. To make the cover-up conspicuous, Figs. 

12 and 13 present an example comparing the latest joint database of ACI committtee 

445D and Deutscher Ausschuss für Stahlbeton (DAfStb) with a size effect factor that is 

deliberately made to be absurdly erroneous, nonsensical. Then it is checked whether 

this error would be detected by the usual point-wise statistics. Fig. 13 compares two 

kinds of predictions: 

1. Fig. 13 shows on top the plot of errors (or residuals) of the predictions 

according to the beam shear equation by Hsu, Yu, Le, Hubler, Cusatis and 

Bažant which uses the ACI-446 size effect factor θ, Eq. 7. The statistics is 

calculated by the method of ACI-445D (which uses uniform weights). 

 



2. Fig. 13 (bottom) shows the plot of residuals calculated when the ACI- 446 

size effect factor θ is deliberately perturbed as θ + ∆θ, where ∆θ is a 

nonsensical periodic perturbation expressed as 

0

0.14 cos[2 (In )]
1 /

θ π∆ = −
+

d s
d d

 (8) 

 See the curves in Fig. 12, in which d0 = 254 mm (10 in.). Parameter s is a 

random phase shift which must be introduced to prevent bias due to the 

fact that the inflexion points of the cosine curve, which are placed arbitrarily, 

have no perturbation while all the others do. Phase shift s varies randomly 

with uniform probability between −0.5 and 0.5 (as obtained from a random 

number generator). These random shifts eliminate any evaluator’s bias so 

that no point on the curve of size effect factor θ would get favored over 

the others. It may be noted, though, that if the shifts s were omitted, i.e., if 

s were fixed as 0, the resulting change in the coefficient of variation 

(C.o.V.) of errors would be about the same. 

The question is whether the ACI-445D statistics can detect this deliberately nonsensical 

perturbation. 

In the current ACI-445 statistics, the prediction is evaluated based on the ratio of 

test value Vtest to the predicted one, Vpre. The errors (or residuals) of the predictions of 

data with the unperturbed and perturbed size effect factors are plotted as functions of 

lnd in Fig. 13, for all the data points in the ACI-445D database. The histograms of the 

errors are plotted on the right, again for both the unperturbed and perturbed cases.  

The perturbation is found to change the C.o.V. of the errors (root-mean-square error 

divided by the data mean) from 0.250 to 0.262, which is by less than 5% of the C.o.V. 

It is now inescapable to note that both plots of the residuals, both histograms and 

 



both C.o.V.’s are almost the same. Evidently, the ACI-445D statistical method cannot 

distinguish a nonsensical model from a realistic one.  How can it then be trusted for 

ranking various proposed models? 

The assessment and ranking of various models clearly requires taking into 

account the scatters of type 2 and 3. The shape of the curve of log vu versus log D must 

be checked by individual sets of data for the same concrete and the same lab before 

everything else. It is, likewise, important to check separately the trends of the type 3 

effects. 

Consequently, the proposed size effect factor must first be shown capable of fitting 

closely the individual test series on the same concrete and from the same lab. 

Subsequently, the proposed equation for beam shear strength needs to be compared to 

the individual tests and the C.o.V. computed for each. Then all these coefficients of 

variation need to be combined (in a root-mean-square manner) into one overall 

coefficient of variation or errors of the proposed beam shear equation. Alternatively, the 

overall coefficient of variation can be extracted from the multivariate optimization of 

the database fitted with an algorithm such as Levenberg-Marquardt’s, in which all the 

parameters are varied simultaneously. 

The fact that the available data cover only parts of size range makes it important 

that the size effect trend be supported by a sound theory and that the theory be 

validated by experiments. This is crucial for extrapolation of the size effect to large 

sizes. Currently, for beams without stirrups, 87% of the available tests pertain to d < 

508 mm (20 in.), 97% pertain to d < 1.27 m (50 in.), and none to more than 3048 mm 

(10 ft.), while, in practice, beams of depths exceeding 14.2 M (46 ft.) have been built. 

 



 
Fig. 12. Unperturbed size effect factor θ of ACI-446 (solid curve) and size effect factor 
perturbed by nonsensical cosinusoidal oscillation (dashed curve) (in the current ACI-
318, the size effect factor is 1 for shear design). 

 

Fig. 13. Residuals (or errors) of unperturbed (top left) and perturbed (bottom left) ACI-
446 size effect factor compared to all the data in the ACI-445D database (beams 
without stirrups), shown as a function of beam size, in semi-logarithmic scale. The 
column diagrams on the right are the histograms of the residuals (the size effect factor, 
which multiplies the concrete shear strength according to any model for small size 
beams, starts at small sizes with the value of 1; the oscillating perturbation shown is 
considered to have amplitude 0.14, which means the spread between maxima and 
minima is 0.28). 

 

 



6 Conclusions and Closing Remarks 

1. For small beam sizes, the plastic limit analysis is applicable and yields a 

small size estimate of the shear strength vu due to concrete. The size effect 

factor θ should be applied to the vu value obtained by the best plastic 

limit analysis (or strut-and-tie) model. 

2. Unfortunately, the statistical evaluation of a beam shear formula must deal 

with a heteroscedastic database that has various kinds of strong bias.  

Mainly: 

a) the data are crowded for small sizes, very scant for large sizes and 

nonexistent for the largest sizes used in practice; b) The average shear 

span and reinforcement ratio of the tests in the database systematically 

decreases through subsequent size intervals. The bias must be filtered by 

statistical weights. The filtering demonstrates that, for large sizes, 

the size effect factor 1/N dσ ∝  (which represents the main resolution of 

ACI-446). 

3. The JSCE Weibull type power law (adopted when no other size effect 

theory was known) is theoretically unjustified and does not agree with the 

subsequently accumulated data. 

4. The Model Code size effect is an extreme case which is theoretically and 

experimentally unjustified, for several reasons: a) The increase of the 

shear force Vu with beam size terminates with a horizontal asymptote, 

which is an overlooked unphysical property, contradicted by tests; b) its 

derivation rests on invalid hypotheses based on the crack initiation state 

rather than the peak load state. The shear force is assumed to be 

transmitted by aggregate interlock distributed uniformly along uniformly 

 



spaced diagonal cracks, rather than localizing into a single crack and also 

along the crack as the size increases. It is ignored that, in large beams, 

most of the shear force gets transmitted by an inclined compression strut 

above the main crack, in which the failure localizes as the size increases. 

The softening stress-separation law on the parallel cracks formed much 

below before the peak load is incorrect. It conflicts with the law known 

from fracture studies of concrete. 

5. Dimensional analysis and the energy balance during crack formation 

inevitably lead to the size effect factor of ACI-446. 

6. Evaluating different beam shear equations according to the coefficient of 

variation of the scatter of prediction errors (residuals) compared to the 

database points is fruitless and misleading. The reason is that the scatter 

due to differences among different concretes and testing labs, 

enhanced by the systematic variation of the average values of a/d, ρw in 

subsequent size intervals, obfuscates the trend of size effect. This cover- up 

is demonstrated by insensitivity to a large nonsensical sinusoidal 

perturbation of the size effect factor. If the statistical method cannot 

distinguish such nonsense, it cannot be used to compare different beam 

shear models. 

7. It should also be noted that the deterministic size effect can, of course, be 

automatically taken into account when the structure is analyzed by 

finite elements based on a realistic constitutive model and damage- 

fracture concepts with a localization limiter (such a limiter is, for ex- 

ample, automatically featured in the widely used crack band model, 

which is utilized in software such as ATENA, SBETA, DIANA and is also 

 



easily implemented in the user’s material subroutine of other soft- ware 

such as UMAT or VUMAT of ABAQUS). The designs of large sensitive 

structures are increasingly subjected to checks by such finite element 

analysis. In that case, a high degree of safety is likely achieved even if the 

design code features a wrong size effect or none. Nevertheless, this is not 

yet a standard practice and, in that case, embedment of the size effect (of 

the correct form) in the design code is important. 

8. Even if the design safety is checked by finite element analysis taking into 

account material uncertainty, embedment of the correct size effect in the 

design code is important for two other reasons: 1) to achieve an economic 

design, and 2) to allow a creative designer to exploit freely the true 

capacity of the material in daring new structural forms. As long as the 

size effect is incorrect, the code will, a priori, exclude some innovative, 

large and daring structural designs from consideration even if they are safe 

and pass the safety check by detailed finite element analysis.

Acknowledgment: Grateful acknowledgment is due to the U.S. Department of 

Transportation for Grant 20778 provided through the Infrastructure 

Technology Institute of Northwestern University, and to the U.S. National 

Science Foundation for grants CMMI-1129449 and CMMI-1153494 to 

Northwestern University. 

 

 

 

 

 



References 

[1] ACI: Building Code Requirements for Structural Concrete (ACI 318-11). MI: Farmington Hills, 

2011. 

[2] fib.: Model Code for Concrete Structures. Lausanne, Berlin: Ernst &Sohn, 2010. 

[3] JSCE.: Standard Specification for Design and Construction of Concrete Structures, Part I: Design. 

Tokyo: Japan Soc. of Civ. Engrs., 1991. 

[4] Ballarini R., Shah S .  P . ,  Keer L.M. Failure Characteristics of short anchor bolts embedded in a 

brittle material. Proc. Roy. Society London A  404 (1986), pp.35-54. 

[5] Ballarini R., Keer L.M., Shah S .  P . :  An analytical model for the pullout of rigid anchors. 

International Journal of Fracture 33 (1987), pp.75-94. 
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