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5Introduction

The Multiple Length Scales of Concrete

Structural Element Scale

L ~ 10-1 – 101 m

Full Structure Scale

L ~ 101 – 102 m

C-S-H    L ~ 10-9 – 10-6 m

Mortar Scale   L ~ 10-4 – 10-3 m

Cement Paste Scale  L ~ 10-6 – 10-4 mII

III

V

VI

VII

Concrete Mesoscale L ~ 10-3 – 10-2 m

Plain Concrete Scale

L ~ 10-2 – 10-1 m

I

IV
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Where Should We Start?

Duomo di Milano

Construction began 1386

Completion 1805

Not a good example of  

sustainable infrastructure!!!

At the Full Structure Scale? At the Structural Element 

Scale?

Full scale tests are extremely 

expensive and time consuming

The time of “beam busting” 

must be over
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Current Practice

II

III

V

VI

VII

I

IV

Current Practice

Material characterization at 

macroscopic material scale

Analytical theories to compute 

the carrying capacity of 

structural elements

Structural theories
Future Practice ??
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Modeling at Different Length Scales

Structural Element Scale L ~ 10-1 – 101 m

 FEM (2D and 3D solid elements, Beam/Truss 

elements for reinforcement), 

Full Structure Scale L ~ 101 – 102 m

 Structural theories

 FEM (Beams, Plates, Shells, …)

 ??

V

VI

VII

Plain Concrete Scale L ~ 10-2 – 10-1 m

 Nonlinear fracture mechanics, Discrete 

modeling, Damage mechanics, Nonlocal 

theories, High-order theory, Peridynamics

 FEM, X-FEM, BEM, E-FEM, Meshless

methods, Lattice/Particle models
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Modeling at Different Length Scales, Cont.

C-S-H    L ~ 10-9 – 10-6 m /  MD/Atomistic  Simulations 

Mortar Scale   L ~ 10-4 – 10-3 m

 FE Numerical Concrete, RBSN

Cement Paste Scale  L ~ 10-6 – 10-4 m

II

III

Concrete Mesoscale L ~ 10-3 – 10-2 m

 Lattice Discrete Particle Model(LDPM), Lattice 

models, DEM

I

IV



Strain Rate Dependence of Concrete

10-8 10-6 10-4 10-2 10 0 10 1 10 2 

Creep Quasi-static 

Vehicular 

impacts 

Plane 

crash Hard impacts 

Earthquakes 

Blasts 

Strain rate 

(s-1) 

Typical strain rates for various types of loading (Bischoff and Perry, 1991) 



Strain Rate Dependence of Concrete

Strain Rate 
Effects

Apparent      

Crack Pattern

Internal 
heterogeneity

Multiple crack 
initiation

Crack 
Branching

Inertia

External 
boundary 
conditions 

and dynamic 
confinement

Intrinsic  

Creep

Arrhenius-type 
processes

Capillary and 
absorbed 

water

Comminution/
Pulverization



LATTICE DISCRETE PARTICLE 

MODELING OF CONCRETE

Grenoble, France  |  Oct 21, 2016







• A priori volume discretization is performed 

taking into account  material 

heterogeneity (coarse aggregate pieces)

• Delaunay triangulation provides volume 

subdivision into tetrahedra starting from 

aggregate centers

• A dual tessellation of the triangulated 

domain defines a set of discrete 

polyhedral cells

• The external triangular faces are the 

facets through which adjacent cells 

interact

Lattice Discrete Particle Model (LDPM)

www.cusatis.us



• Stresses and strains vectors are defined on tessellation facets.
Stresses and strains are defined on a discrete number of 
orientations

• Discrete compatibility equations (strains vs. displacements) are 
formulated through the relative displacements (and rotations) of 
adjacent nodes (particles)

• Discrete equilibrium equations are obtained through the 
equilibrium of each discrete cell

• Vectorial constitutive equations

 Softening behavior is only associated with 
tensile stresses (fracture)

 Compressive behavior is always hardening 
(compaction)

 Shear behavior simulates cohesion and 
friction

Lattice Discrete Particle Model (LDPM)



LDPM Vectorial Constitutive Law

 Discrete compatibility equations (strains vs. displacements) are formulated through 

the relative displacements  (rotations included) of adjacent nodes

 Fracturing Behavior - eN > 0

Shear strain Coupling strain Equivalent strain

Equivalent stress

where

Normal stress Tangential stress Coupling stress
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LDPM Vectorial Constitutive Law

 Frictional Behavior/Compaction - eN < 0

Normal stress s N =

FN (eV ) = -s c +Kc(eV +eC ),

FN (eV ) = -s c0 exp -Kc
eV +ec0

s c0
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Shear stress sT = FT (s N ) =s S + m0 -m¥( )s N0 -m¥s N - m0 -m¥( )s N0 exp s N s N0( )

 Strain Rate Dependence -

Tension stress-strain boundary and the cohesion is scaled by a function of the strain rate,     :e

F(e) =1+ c1asinh e
c2

( )
www.cusatis.us
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 Uniaxial compression tests

 Biaxial compression tests

 Triaxial compression tests with reverse of softening into 
hardening

 Hydrostatic and Uniaxial Strain compression tests

 Direct tensile tests; Brazilian tests

 Module of rupture

 Mode I and Mixed mode fracture tests 

 Energetic size effect

 Cycling loading

 Anchor extraction

 Projectile penetration

 Blast induced fragmentation

 Impact induced fragmentation

 ASR deterioration

 Coupling with heat transfer and multiple species transport

LDPM Modeling Capabilities



Calibration and Validation

• The calibration of the model requires (at least) the 

following set of data: 1) Uniaxial Compression 

Tests, 2) Hydrostatic Compression Tests, 3) 

Fracture Tests

• These data must be either obtained through direct 

experimentation or estimated from published 

experimental data

• Validation is performed by simulating additional 

experimental data without further adjustment of 

model parameters



Example: Fracture Tests

• Fracture specimens (Medium (D =200 mm) used for calibration, Small 
(D = 100 mm) and Large (D = 300 mm) used for validation)



Fracture Tests : Calibration

Three-point 
bending test 

on the 
medium-size 

specimen 
(plus 

unconfined 
uniaxial 

compression 
test and 

hydrostatic 
test – not 
shown) 



Fracture Tests: Validation

Three-point bending test of the large-size specimen



Fracture Tests: Validation, Cont.

Three-point bending test of the small-size specimen



Fracture Tests: Animations

SMALL

MEDIUM

LARGE



Unconfined Compression

Triaxial CompressionTensile Fracture
Biaxial   

Compression

LDPM Modeling Capabilities

Mesoscale modeling of concrete
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Fiber Addition (LDPM-F)

Reinforcing fiber 
at crack initiation

Reinforcing fiber as 
crack width increases in 
random direction

Two embedded 
segments

One “bridging” 
segment across 
crack

LDPM triangular facets 
(cracks) subject both 
concrete tractions,

and forces from 
fiber bridging 
segments.

tc



Fiber-Concrete Interaction

P , v

L

 P is the force, v is the fiber 
displacement, L is embedment length

 A constant friction stress and a 
debonding fracture energy affects the 
initial resistance of the fiber to separate 
from the concrete.

 After debonding:

1) sudden load drop as resistance shifts to a purely frictional nature

2) frictional pullout characterized by slip-hardening coefficient, β

P , v

L

P

v

β = 0: interface friction 
independent of slip

β >0: slip-hardening; 
possibility of fiber rupture 

β < 0: slip-softening; 

vd

(v – vd )



FRC Specimen Geometry

158 mm

158 mm

120 mm
No. tets: 4233

No. particles: 19668

30 mm

30 mm



Vf = 2%

Vf = 0%

Vf = 8%

Vf = 6%

Vf = 3%

Stress vs. Disp. Curves, Steel Fibers

Numerical

Experimental

Concrete parameters 

calibrated using plain 

concrete data

Fiber parameters calibrated 

using Vf = 6% data



Crack Distribution for Vf = 0%

0.14 mm0.08 mm

0.06 mm0.04 mm0.02 mm0 mm

0.12 mm0.10 mm



0 mm 0.12 mm

0.36 mm 0.60 mm0.30 mm

0.06 mm 0.18 mm

0.24 mm

Crack Distribution for Vf = 6%



Animation for Vf = 0 and 6%



Strain Rate Dependent Formulation
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34

Rate Effect and Dynamic Increase Factor

b) a) 
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Effect of Inertia



Inertia and Crack Patterns Effects

 Apparent rate-effect phenomena captured automatically
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Smith J et. al.. “Discrete Modeling of Ultra High Performance Concrete with Application to Projectile Penetration” 65 (2014) 13 – 32, Int J of Imp Eng.



Hopkinson Bar Test - Tension
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Hopkinson Bar Test - Compression
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Compression with Twins Bars

Tests on standars and dam 

concrete mixes
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Experimental Data

Simulation Results
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Experimental Data

Simulation Results
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Experimental Data

Simulation Results
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Experimental Data

Simulation Results
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Experimental Data

Simulation Results
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Experimental Data

Simulation Results

Small Cylindrical Specimen (Dam concrete):

Large Cylindrical Specimen (Dam concrete):

Compression with Twins Bars, Cont



Small Cylindrical Specimen (Standard concrete):

Large Cylindrical Specimen (Standard concrete):
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Experimental Data

Simulation Results
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Experimental Data

Simulation Results
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Experimental Data

Simulation Results

0 5 10
−10

−5

0

5

10

15

20

S
tr

es
s 

[M
P

a]

Time [ms]

Signal at Section 1

 

 

Experimental Data

Simulation Results
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Experimental Data

Simulation Results
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Experimental Data

Simulation Results

Compression with Twins Bars, Cont



Compression with Twins Bars, Cont



Dynamic Concrete Tension Test
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Reaction 
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Loading 

a)  b)  c)  

35 mm/s 1400 mm/s 4300 mm/s

35 mm/s 1400 mm/s 4300 mm/s



Concrete Ball Impact Test
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Concrete Ball Impact Test

1.1E-5 s-1 140 s-1 353 s-1



Penetration of UHPC Panels

12 in (304.8 mm)

12 in

2 in

(50.8 mm)

2.5 in

(63.5 mm)

3 in

(76.2 mm)

A B C

Side view Front view

Top view Back view

 (FSP) projectile:

 4340-H steel

 Yield strength = 930 MPa

 Diameter = 12.5 mm

 Length = 14.8 mm

Smith J et. al.. “Discrete Modeling of Ultra High Performance Concrete with Application to Projectile Penetration” 65 (2014) 13 – 32, Int J of Imp Eng.
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Effect of Fiber Content

Crack

Opening 

(mm)

0.05

0.3

RSC UHPC UHPC - 3% UHPC - 5%

Scabbing

Fixed 

boundary

Scabbing

Free 

boundary

Side view

Fixed 

boundary

Smith J et. al.. “Discrete Modeling of Ultra High Performance Concrete with Application to Projectile Penetration” 65 (2014) 13 – 32, Int J of Imp Eng.



Penetration of Regular Strength Concrete

• Experimental data (Hanchak et al. 1992 ) 

relevant to impact of steel projectiles against 

lightly reinforced concrete slabs

• Projectile of mass m=0.5 kg and diameter d = 

25.4 mm

• Slab 610 x 610 x 178 mm

• Concrete Young Modulus 20000 MPa

• Concrete Strength f’c = 48 MPa

• Impact velocity from 300 m/s to 1000 m/s



Full Meso-Scale Simulations

1,229,348 LDPM tets208,967 nodes

1,253,802 dofs

Steel reinforcement

diameter = 0.569 cm 

spacing = 7.62 cm



Full Meso-Scale Simulations: Results

Severe Damage Nonlinear 

Behavior

Front Face

Front Face 

Scabbing 

Initiation



Comparison with Experiments

Col VS VR,num VR,exp

Blu 1058 947 947

Red 749 611 615

Gre 606 444 449

Yel 434 244 214

Mag 381 173 136

Cya 360 132 67

Bla 350 0 0

Grey 301 0 0



Animation: Ballistic Limit (~350 m/s)

Projectile Velocity vs. Time
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Blast Simulations: Geometry 1 



Simulated Tests

Test 

No.

Rebar spacing s 

(mm)

W C4 

(kg)

R (m) D (mm)

1 50.8 0.454 0.183 152

2 25.4 0.454 0.183 152

3 50.8 0.454 0.183 152

4 25.4 0.454 0.183 152

5 50.8 0.227 0.152 229

 Compressive Strength=26.7 MPa

 Experimental Data from “Explosive fragmentation of dividing walls”, 

Report ARLCD-CR-81018;

 Blast-reflected pressures computed using US Army, US Navy, US Air 

Force, 1990. “Structures to resist the effects of accidental explosions”. 

Technical report TM5-1300, NAVFAC P-397, AFR 88-22 and Hyde, D.W., 

1992. “CONWEP, Conventional Weapons Effects Program.” Technical 

report, US Army Engineer Waterways Experiment Station, Vicksburg, MS.



Results: Test 1



Animation Test 1



Results: Test 3



Animation Test 3



Blue = test 1; Red = test 2; Green = test 3;

Pink = test 4; Cyan = test 5.

Test5
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MARS – Multiscale-multiphysics
Analysis of the Response of 

Structures
http://mars.es3inc.com
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The MARS Solver

MARS (Modeling and Analysis of the 

Response of Structures) is a 

multipurpose object-oriented 

computational software for simulating the 

mechanical response of structural 

systems subjected to short duration 

events.

It is based on dynamic explicit 

algorithms and it implements all the 

capabilities and versatility of a general 

finite element code.



MARS Is a General Purpose 

Structural Dynamic Code

• Lattice Discrete Particle Model (LDPM) for simulations 
of cementitious materials

• QPH quadrilateral shell elements with physical 
hourglass stabilization and triangular shell elements,

• Beam elements with various built-in cross sections,
• 8-Node Flanagan-Belytschko hexahedral elements with 

hourglass stabilization and hyper-elastic solid 
elements,

• Various constraint formulations, 
• Automatic contact algorithm for node-face, edge-edge, 

node-edge, node-node contact detection.
• Discrete Element method.



Lattice Discrete Particle Model

Beam Shear Failure



Discrete Fragmentation Algorithm 

for Solid Components

The weapon case is modeled using conventional 8-

node hex elements. Discrete cracks are introduced 

by performing local remeshing.
Click on figures to start animations



Plate Laceration Due 

to Fragment Impact

The laceration 

algorithm inserts small 

cracks in a continuous 

mesh based on a local 

measure of plastic 

strain and on a Weibull

flaw distribution



Realistic Particle Dynamics

Note the jerky motions of the 

particles inside this rolling container

Rotating tumbling mill quickly come to a 

halt due to macro-particle internal 

dissipation

Click on figures to 

start animations



MPI Domain Decomposition

Domains are visualized using 

exploded views and different colors



Try MARS for free at

http://mars.es3inc.com/trym
ars.php



CONCLUSIONS
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Conclusions

• LDPM is a very mature technology that can be 

confidently used to simulate the behavior of standard 

and ultra-high performance concrete, without and with 

fiber reinforcing.

• LDPM shows unprecedented predictive capabilities 

under a wide variety of loading conditions, both quasi-

static and dynamic.

• LDPM is the only approach which has been 

successfully used to perform predictive multiscale

simulations of concrete structures.

• LDPM is ready to tackle practical engineering 

problems dealing with both long term aging 

deterioration as well as catastrophic man-made and 

natural hazards.



THANK YOU!

g-cusatis@northwestern.edu

www.cusatis.us

Grenoble, France  |  Oct 21, 2016



Parallelization of Bullet 

Impacting FRC Panel
• Panel is model using 3.17 M LDPM tet element

• A geometric tet element requires 40 bytes of 

memory; a LDPM element requires over 5 Kbytes of 

memory
• For this problem, recursive 

bisection employs tet

centers as points



Example of Penetration 

Results from this Model



MPI Performance

Number of cores
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Adjusted for size

43% speed up from 64 to 

128 processors

Whole model does not          

fit in the memory of a single 

compute node



MARS – Multiscale-multiphysics
Analysis of the Response of 

Structures
http://mars.es3inc.com

Hong Kong, China  |  Aug 26, 2016



The MARS Solver

MARS (Modeling and Analysis of the 

Response of Structures) is a 

multipurpose object-oriented 

computational software for simulating the 

mechanical response of structural 

systems subjected to short duration 

events.

It is based on dynamic explicit 

algorithms and it implements all the 

capabilities and versatility of a general 

finite element code.



MARS Is a General Purpose 

Structural Dynamic Code

• Lattice Discrete Particle Model (LDPM) for simulations 
of cementitious materials

• QPH quadrilateral shell elements with physical 
hourglass stabilization and triangular shell elements,

• Beam elements with various built-in cross sections,
• 8-Node Flanagan-Belytschko hexahedral elements with 

hourglass stabilization and hyper-elastic solid 
elements,

• Various constraint formulations, 
• Automatic contact algorithm for node-face, edge-edge, 

node-edge, node-node contact detection.
• Discrete Element method.



Lattice Discrete Particle Model

Beam Shear Failure



Discrete Fragmentation Algorithm 

for Solid Components

The weapon case is modeled using conventional 8-

node hex elements. Discrete cracks are introduced 

by performing local remeshing.
Click on figures to start animations



Plate Laceration Due 

to Fragment Impact

The laceration 

algorithm inserts small 

cracks in a continuous 

mesh based on a local 

measure of plastic 

strain and on a Weibull

flaw distribution



Exploded View of Plate, 

Reactive Structure, and Bolts

Bolts are modeled using 2 beam elements for the 

stem and three 4-node shells for the head. Stem 

can fail under tensile and shear loads.

Components interact using contact elements. Pre-

stress is applied to the bolts.

91800 4-node shell elements

See animations in next page



Shell Laceration

Bolt Failures

Ability of modeling model complexity

Click on figures to 

start animations



Contact Detection Algorithms

in the MARS code

The MARS contact detection algorithm has 
the following features:

• Arbitrary contacts between face, 
edges, and particles

• Automatic contact detection with 
dynamic memory allocation

• One object can interact with 
multiple other objects at the same 
time

• Shared contact models: penalty, 
damping, friction, rolling resistance 
(similar to material models)

Node/Face Contact

Node-Node Contact

Node-Edge Contact

Edge-Edge Contact



Vertical Compression Buckling of 

Cylindrical Shell

Triangular shell elements

The top edge of an aluminum cylinder resting on a rigid 

surface is pushed down causing the cylinder to crush

no imperfections

slight surface 

imperfections

Click on figures to 

start animations



Cable Dynamics

Click on figures to 

start animations

Wires are modeled using strings of 

beam elements. Edge-edge contacts 

keep wires from crossing each other.



Discrete Element Method for 

Modeling Granular Materials

Random shapes of non-spherical macro-particles

 Soil regions are modeled as random distributions of 

spherical or non-spherical particles (Discrete Element 

Method, DEM)

 DEM regions are perfectly integrated with the Finite 

Element regions of the model.

 Interactions between particles and finite elements employ 

various types of contact conditions.

Simple contact 

conditions



Realistic Particle Dynamics

Note the jerky motions of the 

particles inside this rolling container

Rotating tumbling mill quickly come to a 

halt due to macro-particle internal 

dissipation

Click on figures to 

start animations



Vehicle Subjected to Explosion

Model of a Ford Taurus (developed by GWU) subjected to external charge loads.



Protective Door Subjected 

to Blast Loads

These simulations were 

performed coupling 

MARS to a CFD solver

Predictive simulations with 

blast and fragments



Sandwich Brick Wall 
Subjected to Blast Loads

Sandwich wall consisting of soil 

trapped between two brick walls.  

The wall is subjected to blast loads 

that propel bricks and soil particles.

MARS coupled to a 

CFD solver



Simulations of Aircraft 
Arresting Systems



MPI
PARALLELIZATION



MARS Employs Recursive Bisection 
for Domain Decomposition

• Turn most computationally expensive 
objects into points.

• Decompose space into N bins (domain 
decomposition) containing equal 
number of points by recursively 
splitting the initial bounding bin.

• At the boundaries, domains are 
extended to infinity so that any object, 
no matter where it is located, can be 
uniquely placed in one of the domains

• Assign all other objects (contacts 
included) to domains based on spatial 
location

1st cut

2nd cut

2nd cut

3rd cut

3rd cut

3rd cut

3rd cut



Visualization of MPI Domain 

Decompositions

Domains are visualized using 

exploded views and different paints



Parallelization of Bullet 

Impacting FRC Panel

• Panel is model using 3.17 M LDPM tet element

• A geometric tet element requires 40 bytes of 

memory; a LDPM element requires over 5 Kbytes of 

memory
• For this problem, recursive 

bisection employs tet

centers as points



Example of Penetration 

Results from this Model



MPI Performance

Number of cores

C
y
c
le

s
/m

in
u
te

Number of cores
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Adjusted for size

43% speed up from 64 to 

128 processors

Whole model does not          

fit in the memory of a single 

compute node



Try MARS for free at

http://mars.es3inc.com/trym
ars.php



Parametric Study of Fragmentation

• Impact of a steel cylindrical rod against a quasi-brittle 
brick

• The objective is to study fragmentation processes

• Various velocities and masses of the cylinder are 
considered

Brick Mass = 2.75 Kg

M = 0.72 Kg



# of Fragments Increases with Velocity

V=400 in/s

V=800 in/s



V=1200 in/s

V=1600 in/s

# of Fragments Increases with Velocity
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Penetration: Multiple Hits

Case # 1: Centered Hits Case # 2: Offset Hits

P1P2 P1

P2



Multiple Hits: Projectile Velocity

P1P1

P2
P1P2

P1
P2

P1

P2

P2


