Grenoble, France | Oct 21, 2016

The Lattice Discrete Particle Model (LDPM) for Fracture Dynamics and Rate Effect in Concrete: Theory, Calibration and Applications

BY
GIANLUCA CUSATIS¹

${ }^{1}$ NORTHWESTERN UNIVERSITY, EVANSTON, IL

22th DYMAT TECHNICAL MEETING

GRENOBLE
October 19-21th

Acknowledgements

Collaborators

- Daniele Pelessone \& Xinwei Zhou (ES3)
- Jovanca Smith (University of West Indies)
- George Solomos (JRC)

Funding

- Engineer Research Development Center
- National Science Foundation

Presentation Outline

I Introduction
Lattice Discrete Particle Model (LDPM)

* Calibration and Validation for Concrete and Fiber Reinforced Concrete
* Simulation of Ultra High Performance Concrete
* Dynamic Behavior and Rate-Effect
* Projectile Penetration; Blast Analysis; Fragmentation
\square MARS Software
- Conclusions

Grenoble, France | Oct 21, 2016

INTRODUCTION

The Multiple Length Scales of Concrete

Full Structure Scale
L ~ $10^{1}-10^{2} \mathrm{~m}$
Structural Element Scale
$\mathrm{L} \sim 10^{-1}-10^{1} \mathrm{~m}$
Plain Concrete Scale
$\mathrm{L} \sim 10^{-2}-10^{-1} \mathrm{~m}$

IV Concrete Mesoscale $L \sim 10^{-3}-10^{-2} \mathrm{~m}$
III
Mortar Scale L ~ $10^{-4}-10^{-3} \mathrm{~m}$
Cement Paste Scale $\mathrm{L} \sim 10^{-6}-10^{-4} \mathrm{~m}$
I C-S-H L $\sim 10^{-9}-10^{-6} \mathrm{~m}$

Where Should We Start?

At the Full Structure Scale?

Duomo di Milano
Construction began 1386 Completion 1805 Not a good example of sustainable infrastructure!!!

At the Structural Element

 Scale?

Full scale tests are extremely expensive and time consuming The time of "beam busting" must be over

Current Practice

Modeling at Different Length Scales

Full Structure Scale L ~ $10^{1}-10^{2} \mathrm{~m}$
\triangleleft Structural theories
\diamond FEM (Beams, Plates, Shells, ...)
\diamond ??

Structural Element Scale L ~ $10^{-1}-10^{1} \mathrm{~m}$
\diamond FEM (2D and 3D solid elements, Beam/Truss elements for reinforcement),

Plain Concrete Scale L ~ $10^{-2}-10^{-1} \mathrm{~m}$
\triangleleft Nonlinear fracture mechanics, Discrete modeling, Damage mechanics, Nonlocal theories, High-order theory, Peridynamics
\diamond FEM, X-FEM, BEM, E-FEM, Meshless methods, Lattice/Particle models

Modeling at Different Length Scales, Cont

Concrete Mesoscale L ~ $10^{-3}-10^{-2} \mathrm{~m}$
« Lattice Discrete Particle Model(LDPM), Lattice models, DEM

Mortar Scale L ~ $10^{-4}-10^{-3} \mathrm{~m}$
\triangleleft FE Numerical Concrete, RBSN

Cement Paste Scale $\mathrm{L} \sim 10^{-6}-10^{-4} \mathrm{~m}$

Strain Rate Dependence of Concrete

Typical strain rates for various types of loading (Bischoff and Perry, 1991)

Strain Rate Dependence of Concrete

Grenoble, France | Oct 21, 2016

LATTICE DISCRETE PARTICLE MODELING OF CONCRETE

Lattice Discrete Particle Model (LDPM)

- A priori volume discretization is performed taking into account material heterogeneity (coarse aggregate pieces)
- Delaunay triangulation provides volume subdivision into tetrahedra starting from aggregate centers

- A dual tessellation of the triangulated domain defines a set of discrete polyhedral cells
- The external triangular faces are the facets through which adjacent cells interact

Lattice Discrete Particle Model (LDPM)

- Stresses and strains vectors are defined on tessellation facets. Stresses and strains are defined on a discrete number of orientations
- Discrete compatibility equations (strains vs. displacements) are formulated through the relative displacements (and rotations) of adjacent nodes (particles)
- Discrete equilibrium equations are obtained through the equilibrium of each discrete cell
- Vectorial constitutive equations
> Softening behavior is only associated with tensile stresses (fracture)
> Compressive behavior is always hardening (compaction)
> Shear behavior simulates cohesion and friction

LDPM Vectorial Constitutive Law

\square Discrete compatibility equations (strains vs. displacements) are formulated through the relative displacements (rotations included) of adjacent nodes

$$
\varepsilon_{N}=\frac{n^{T} \llbracket u \rrbracket}{L} \quad \varepsilon_{M}=\frac{m^{T} \llbracket u \rrbracket}{L} \quad \varepsilon_{L}=\frac{l^{T} \llbracket u \rrbracket}{L}
$$

- Fracturing Behavior - ${ }_{N}>0$

Shear strain

${ }_{T}=\sqrt{{ }_{M}^{2}+{ }_{L}^{2}}$

Coupling strain
$\tan =\frac{N}{\sqrt{V}_{T}}$

Equivalent strain

$$
=\sqrt{{ }_{N}^{2}+{ }_{T}^{2}}
$$

Equivalent stress

$$
=E^{\cdot}
$$

where

$$
{ }_{b}(,)={ }_{0}(\quad) \exp K() \frac{\left\langle{ }_{0}(\quad)\right\rangle}{{ }_{0}(\quad)}
$$

Normal stress
Tangential stress

$$
{ }_{N}=-_{N} \quad{ }_{T}=-_{T} \quad \tan =\frac{N}{{ }_{T} / \sqrt{ }}
$$

Shear
Tension

LDPM Vectorial Constitutive Law

- Frictional Behavior/Compaction - ${ }_{N}<0$

$$
F_{N}\left({ }_{V}\right)={ }_{c}+K_{c}\left({ }_{V}+{ }_{c}\right),
$$

$$
{ }_{V}<0
$$

Normal stress

$$
{ }_{N}=F_{N}\left({ }_{V}\right)={ }_{c 0} \exp \quad K_{c} \frac{V_{c 0}{ }_{c 0}}{{ }_{c 0}} \div \quad \quad{ }^{\circ} \quad{ }_{c 0}
$$

Shear stress

$$
{ }_{T}=F_{T}\left({ }_{N}\right)={ }_{S}+\left(\begin{array}{ll}
0 &)
\end{array}{ }_{N 0}\right.
$$

$$
{ }_{N}\left(\begin{array} { l l }
{ 0 } & {) } \\
{ N _ { 0 } }
\end{array} \operatorname { e x p } \left({ }_{N} /\right.\right.
$$

$$
\left.{ }_{\text {no }}\right)
$$

V
N

- Strain Rate Dependence -

Tension stress-strain boundary and the cohesion is scaled by a function of the strain rate, ${ }^{\bullet}$:

$$
F(\cdot)=1+c_{1} a \sinh \left(/ c_{2}\right)
$$

LDPM Modeling Capabilities

* Uniaxial compression tests
* Biaxial compression tests
* Triaxial compression tests with reverse of softening into hardening
* Hydrostatic and Uniaxial Strain compression tests
* Direct tensile tests; Brazilian tests
* Module of rupture
* Mode I and Mixed mode fracture tests
* Energetic size effect
* Cycling loading
* Anchor extraction
* Projectile penetration
- Blast induced fragmentation
* Impact induced fragmentation
- ASR deterioration
* Coupling with heat transfer and multiple species transport
- The calibration of the model requires (at least) the following set of data: 1) Uniaxial Compression Tests, 2) Hydrostatic Compression Tests, 3) Fracture Tests
- These data must be either obtained through direct experimentation or estimated from published experimental data
- Validation is performed by simulating additional experimental data without further adjustment of model parameters

Example: Fracture Tests

- Fracture specimens (Medium ($D=200 \mathrm{~mm}$) used for calibration, Small ($D=100 \mathrm{~mm}$) and Large ($D=300 \mathrm{~mm}$) used for validation)

Fracture Tests : Calibration

Three-point bending test on the medium-size specimen (plus unconfined uniaxial compression test and hydrostatic test - not shown)

Three-point bending test of the large-size specimen

Fracture Tests: Validation, Cont.

Three-point bending test of the small-size specimen

Fracture Tests: Animations

SMALL

MEDIUM

LARGE

LDPM Modeling Capabilities

Unconfined Compression

Tensile Fracture

Biaxial
Compression

Triaxial Compression

Biaxial Behavior: Failure Modes

Fiber Addition (LDPM-F)

Fiber-Concrete Interaction

- $\quad P$ is the force, v is the fiber displacement, L is embedment length
- A constant friction stress and a debonding fracture energy affects the initial resistance of the fiber to separate from the concrete.
- After debonding:

1) sudden load drop as resistance shifts to a purely frictional nature
2) frictional pullout characterized by slip-hardening coefficient, β
$\beta<0$: slip-softening;
$\beta>0$: slip-hardening; possibility of fiber rupture
$\beta=0$: interface friction
independent of slip

FRC Specimen Geometry

Stress vs. Disp. Curves, Steel Fibers

Crack Distribution for $V_{f}=0 \%$

Crack Distribution for $V_{f}=6 \%$

Animation for $V_{f}=0$ and 6%

Strain Rate Dependent Formulation

$$
F(\dot{\circ})=1+c_{1} a \sinh \frac{}{c_{0} / l} \dot{\vdots}
$$

Rate Effect and Dynamic Increase Factor

Effect of Inertia

b

$$
\begin{aligned}
& \operatorname{DIF}_{c}=\frac{f_{c}^{d y n}}{f_{c}^{\prime}}=\operatorname{DIF}^{*}+\frac{f^{i n}}{f_{c}^{\prime}} \\
& \text { and }
\end{aligned}
$$

$$
\mathrm{DIF}_{t}=\frac{f_{t}^{d y n}}{f_{t}^{\prime}}=\mathrm{DIF}^{*}+\frac{f^{i n}}{f_{t}^{\prime}} \approx \mathrm{DIF}^{*}+10 \frac{f^{i n}}{f_{c}^{\prime}}
$$

Inertia and Crack Patterns Effects

- Apparent rate-effect phenomena captured automatically

Hopkinson Bar Test - Tension

2000 mm
200 mm

Hopkinson Bar Test - Compression

Compression with Twins Bars

Tests on standars and dam concrete mixes

Compression with Twins Bars, Cont

Small Cylindrical Specimen (Dam concrete):

Large Cylindrical Specimen (Dam concrete):

Compression with Twins Bars, Cont

Small Cylindrical Specimen (Standard concrete):

Large Cylindrical Specimen (Standard concrete):

Compression with Twins Bars, Cont

Dynamic Concrete Tension Test

Concrete Ball Impact Test

b)

c)

place of ring tensile stress

place of cone of fines
meridian cracks

Concrete Ball Impact Test

$1.1 \mathrm{E}-5 \mathrm{~s}^{-1}$

$140 \mathrm{~s}^{-1}$

$353 \mathrm{~s}^{-1}$

Penetration of UHPC Panels

- (FSP) projectile:
- 4340-H steel
- Yield strength = 930 MPa
- Diameter $=12.5 \mathrm{~mm}$
- Length $=14.8 \mathrm{~mm}$

Side view

Top view

Front view

Back view

Damage Evolution

Progression of projectile penetration for CORTUF-Plain size A

Crack Opening (mm)

$$
0.05 \longleftarrow 0.3
$$

b)

Effect of Fiber Content

Penetration of Regular Strength Concrete

- Experimental data (Hanchak et al. 1992) relevant to impact of steel projectiles against lightly reinforced concrete slabs
- Projectile of mass $m=0.5 \mathrm{~kg}$ and diameter $d=$ 25.4 mm
- Slab $610 \times 610 \times 178 \mathrm{~mm}$
- Concrete Young Modulus 20000 MPa
- Concrete Strength $f_{c}{ }_{c}=48 \mathrm{MPa}$
- Impact velocity from $300 \mathrm{~m} / \mathrm{s}$ to $1000 \mathrm{~m} / \mathrm{s}$

Full Meso-Scale Simulations

Steel reinforcement diameter $=0.569 \mathrm{~cm}$ spacing $=7.62 \mathrm{~cm}$

208,967 nodes
1,253,802 dofs

Full Meso-Scale Simulations: Results

Severe Damage

Nonlinear Behavior

Comparison with Experiments

Animation: Ballistic Limit ($\sim 350 \mathrm{~m} / \mathrm{s}$)

Blast Simulations: Geometry 1

Simulated Tests

Test No.	Rebar spacing s $(\mathbf{m m})$	W C4 $(\mathbf{k g})$	$\mathbf{R (m)}$	$\mathbf{D}(\mathbf{m m})$
1	50.8	0.454	0.183	152
2	25.4	0.454	0.183	152
3	50.8	0.454	0.183	152
4	25.4	0.454	0.183	152
5	50.8	0.227	0.152	229

$>$ Compressive Strength=26.7 MPa
> Experimental Data from "Explosive fragmentation of dividing walls", Report ARLCD-CR-81018;
$>$ Blast-reflected pressures computed using US Army, US Navy, US Air Force, 1990. "Structures to resist the effects of accidental explosions". Technical report TM5-1300, NAVFAC P-397, AFR 88-22 and Hyde, D.W., 1992. "CONWEP, Conventional Weapons Effects Program." Technical report, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Results: Test 1

Animation Test 1

Results: Test 3

Animation Test 3

Fragment Distributions

Blue = test 1; Red = test 2; Green = test 3;

Pink $=$ test 4 ; Cyan $=$ test 5.

MARS - Multiscale-multiphysics
 Analysis of the Response of Structures http://mars.es3inc.com

Grenoble, France | Oct 21, 2016

The MARS Solver

MARS (Modeling and Analysis of the Response of Structures) is a multipurpose object-oriented computational software for simulating the mechanical response of structural systems subjected to short duration events.

It is based on dynamic explicit algorithms and it implements all the capabilities and versatility of a general finite element code.

ES3

MARS Is a General Purpose Structural Dynamic Code

- Lattice Discrete Particle Model (LDPM) for simulations of cementitious materials
- QPH quadrilateral shell elements with physical hourglass stabilization and triangular shell elements,
- Beam elements with various built-in cross sections,
- 8-Node Flanagan-Belytschko hexahedral elements with hourglass stabilization and hyper-elastic solid elements,
- Various constraint formulations,
- Automatic contact algorithm for node-face, edge-edge, node-edge, node-node contact detection.
- Discrete Element method.

Lattice Discrete Particle Model

Beam Shear Failure

Discrete Fragmentation Algorithm for Solid Components

The weapon case is modeled using conventional 8node hex elements. Discrete cracks are introduced by performing local remeshing.

Plate Laceration Due to Fragment Impact

The laceration algorithm inserts small cracks in a continuous mesh based on a local measure of plastic strain and on a Weibull flaw distribution

Realistic Particle Dynamics

Note the jerky motions of the particles inside this rolling container

Click on figures to start animations

』 Rotating tumbling mill quickly come to a halt due to macro-particle internal dissipation

MPI Domain Decomposition

Domains are visualized using exploded views and different colors

PlotList DomainDecomposition \{ Paraview
TimeInterval 100. s
nd Particles \{
DomainDecomposition 1.3

Try MARS for free at

http://mars.es3inc.com/trym ars.php

ES3

Grenoble, France | Oct 21, 2016

CONCLUSIONS

Conclusions

- LDPM is a very mature technology that can be confidently used to simulate the behavior of standard and ultra-high performance concrete, without and with fiber reinforcing.
- LDPM shows unprecedented predictive capabilities under a wide variety of loading conditions, both quasistatic and dynamic.
- LDPM is the only approach which has been successfully used to perform predictive multiscale simulations of concrete structures.
- LDPM is ready to tackle practical engineering problems dealing with both long term aging deterioration as well as catastrophic man-made and natural hazards.

Grenoble, France | Oct 21, 2016

THANK YOU!

g-cusatis@northwestern.edu
www.cusatis.us

Parallelization of Bullet Impacting FRC Panel

- Panel is model using 3.17 M LDPM tet element
- A geometric tet element requires 40 bytes of memory; a LDPM element requires over 5 Kbytes of memory
- For this problem, recursive bisection employs tet centers as points

Example of Penetration Results from this Model

MPI Performance

Whole model does not fit in the memory of a single compute node

MARS - Multiscale-multiphysics
 Analysis of the Response of Structures http://mars.es3inc.com

Hong Kong, China | Aug 26, 2016

The MARS Solver

MARS (Modeling and Analysis of the Response of Structures) is a multipurpose object-oriented computational software for simulating the mechanical response of structural systems subjected to short duration events.

It is based on dynamic explicit algorithms and it implements all the capabilities and versatility of a general finite element code.

ES3

MARS Is a General Purpose Structural Dynamic Code

- Lattice Discrete Particle Model (LDPM) for simulations of cementitious materials
- QPH quadrilateral shell elements with physical hourglass stabilization and triangular shell elements,
- Beam elements with various built-in cross sections,
- 8-Node Flanagan-Belytschko hexahedral elements with hourglass stabilization and hyper-elastic solid elements,
- Various constraint formulations,
- Automatic contact algorithm for node-face, edge-edge, node-edge, node-node contact detection.
- Discrete Element method.

Lattice Discrete Particle Model

旦
 目

Beam Shear Failure

Discrete Fragmentation Algorithm for Solid Components

The weapon case is modeled using conventional 8node hex elements. Discrete cracks are introduced by performing local remeshing.

Plate Laceration Due to Fragment Impact

The laceration algorithm inserts small cracks in a continuous mesh based on a local measure of plastic strain and on a Weibull flaw distribution

Exploded View of Plate,

 Reactive Structure, and Bolts

Bolts are modeled using 2 beam elements for the stem and three 4 -node shells for the head. Stem can fail under tensile and shear loads.

Components interact using contact elements. Prestress is applied to the bolts.

Shell Laceration Bolt Failures

Click on figures to start animations

Ability of modeling model complexity

Contact Detection Algorithms in the MARS code

The MARS contact detection algorithm has the following features:

- Arbitrary contacts between face, edges, and particles
- Automatic contact detection with dynamic memory allocation
- One object can interact with multiple other objects at the same time
- Shared contact models: penalty, damping, friction, rolling resistance (similar to material models)

Node/Face Contact

Vertical Compression Buckling of Cylindrical Shell

The top edge of an aluminum cylinder resting on a rigid surface is pushed down causing the cylinder to crush

Triangular shell elements
no imperfections
-

Click on figures to start animations

Cable Dynamics

Wires are modeled using strings of beam elements. Edge-edge contacts keep wires from crossing each other.

Discrete Element Method for Modeling Granular Materials

- Soil regions are modeled as random distributions of spherical or non-spherical particles (Discrete Element Method, DEM)
- DEM regions are perfectly integrated with the Finite Element regions of the model.
- Interactions between particles and finite elements employ various types of contact conditions.

Simple contact conditions

Random shapes of non-spherical macro-particles

Realistic Particle Dynamics

Note the jerky motions of the particles inside this rolling container

Click on figures to start animations

』 Rotating tumbling mill quickly come to a halt due to macro-particle internal dissipation

Vehicle Subjected to Explosion

Model of a Ford Taurus (developed by GWU) subjected to external charge loads.

Protective Door Subjected to Blast Loads

These simulations were performed coupling MARS to a CFD solver

Predictive simulations with blast and fragments

Sandwich Brick Wall

Subjected to Blast Loads

MARS coupled to a CFD solver

Sandwich wall consisting of soil trapped between two brick walls. The wall is subjected to blast loads that propel bricks and soil particles.

Simulations of Aircraft Arresting Systems

ESB

MPI PARALLELIZATION

MARS Employs Recursive Bisection for Domain Decomposition

- Turn most computationally expensive objects into points.
- Decompose space into N bins (domain decomposition) containing equal number of points by recursively splitting the initial bounding bin.
- At the boundaries, domains are extended to infinity so that any object, no matter where it is located, can be uniquely placed in one of the domains
- Assign all other objects (contacts included) to domains based on spatial
 location

Visualization of MPI Domain Decompositions

Domains are visualized using exploded views and different paints

PlotList DomainDecomposition \{

Paraview

TimeInterval 100. s
nd Particles \{
DomainDecomposition 1.3

Parallelization of Bullet Impacting FRC Panel

- Panel is model using 3.17 M LDPM tet element
- A geometric tet element requires 40 bytes of memory; a LDPM element requires over 5 Kbytes of memory
- For this problem, recursive bisection employs tet centers as points

Example of Penetration Results from this Model

MPI Performance

Whole model does not fit in the memory of a single compute node

ES3

Try MARS for free at

http://mars.es3inc.com/trym ars.php

ES3

Parametric Study of Fragmentation

- Impact of a steel cylindrical rod against a quasi-brittle brick
- The objective is to study fragmentation processes
- Various velocities and masses of the cylinder are considered

\# of Fragments Increases with Velocity

$V=400 \mathrm{in} / \mathrm{s}$

\# of Fragments Increases with Velocity

$\mathrm{V}=1200 \mathrm{in} / \mathrm{s}$

$\mathrm{V}=1600 \mathrm{in} / \mathrm{s}$

Case \# 1: Centered Hits

Γ

Case \# 2: Offset Hits

